Войти
Русь. История России. Современная Россия
  • Что изучает социальная психология
  • Океан – наше будущее Роль Мирового океана в жизни Земли
  • Ковер из Байё — какие фильмы смотрели в Средние века
  • Библиотека: читающий малыш
  • Всадник без головы: главные герои, краткая характеристика
  • 3 стили речи. Стили текста. Жанры текста в русском языке. §2. Языковые признаки научного стиля речи
  • Масса ядра нейтрона е м. Общие характеристики нейтронов. Что такое ядро

    Масса ядра нейтрона е м. Общие характеристики нейтронов. Что такое ядро

    Глава первая. СВОЙСТВА СТАБИЛЬНЫХ ЯДЕР

    Выше уже было сказано, что ядро состоит из протонов и нейтронов, связанных ядерными силами. Если измерять массу ядра в атомных единицах массы, то она должна быть близка к массе протона, умноженной на целое число называемое массовым числом. Если заряд ядра а массовое число то это означает, что в состав ядра входит протонов и нейтронов. (Число нейтронов в составе ядра обозначается обычно через

    Эти свойства ядра отражены в символических обозначениях, которые будут использованы в дальнейшем в виде

    где X - название элемента, атому которого принадлежит ядро (например, ядра: гелия - , кислорода - , железа - урана

    К числу основных характеристик стабильных ядер можно отнести: заряд, массу, радиус, механический и магнитный моменты, спектр возбужденных состояний, четность и квадрупольный момент. Радиоактивные (нестабильные) ядра дополнительно характеризуются временем жизни, типом радиоактивных превращений, энергией испускаемых частиц и рядом других специальных свойств, о которых будет сказано далее.

    Прежде всего рассмотрим свойства элементарных частиц, из которых состоит ядро: протона и нейтрона.

    § 1. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ПРОТОНА И НЕЙТРОНА

    Масса. В единицах массы электрона: масса протона масса нейтрона .

    В атомных единицах массы: масса протона масса нейтрона

    В энергетических единицах масса покоя протона масса покоя нейтрона

    Электрический заряд. q - параметр, характеризующий взаимодействие частицы с электрическим полем, выражается в единицах заряда электрона где

    Все элементарные частицы несут количество электричества, равное либо 0, либо Заряд протона Заряд нейтрона равен нулю.

    Спин. Спины протона и нейтрона равны Обе частицы являются фермионами и подчиняются статистике Ферми-Дирака, а следовательно, и принципу Паули.

    Магнитный момент. Если подставить в формулу (10), определяющую магнитный момент электрона вместо массы электрона массу протона, получим

    Величина называется ядерным магнитоном. Можно было предположить по аналогии с электроном, что спиновый магнитный момент протона равен Однако опыт показал, что собственный магнитный момент протона больше ядерного магнетона: по современным данным

    Кроме того, оказалось, что незаряженная частица - нейтрон - также имеет магнитный момент, отличный от нуля и равный

    Наличие магнитного момента у нейтрона и столь большое значение магнитного момента у протона противоречат предположениям о точечности этих частиц. Ряд экспериментальных данных, полученных в последние годы, свидетельствует о том, что и протон и нейтрон обладают сложной неоднородной структурой. В центре нейтрона при этом находится положительный заряд, а на периферии равный ему по величине распределенный в объеме частицы отрицательный заряд. Но поскольку магнитный момент определяется не только величиной обтекающего тока, но и охватываемой им площадью, то создаваемые ими магнитные моменты не будут равны. Поэтому нейтрон может обладать магнитным моментом, оставаясь в целом нейтральным.

    Взаимные превращения нуклонов. Масса нейтрона больше массы протона на 0,14%, или на 2,5 массы электрона,

    В свободном состоянии нейтрон распадается на протон, электрон и антинейтрино: Среднее время жизни его близко к 17 мин.

    Протон - частица стабильная. Однако внутри ядра он может превращаться в нейтрон; при этом реакция идет по схеме

    Разница в массах частиц, стоящих слева и справа, компенсируется за счет энергии, сообщаемой протону другими нуклонами ядра.

    Протон и нейтрон имеют одинаковые спины, почти одинаковые массы и могут превращаться друг в друга. В дальнейшем будет показано, что и ядерные силы, действующие между этими частицами попарно, тоже одинаковы. Поэтому их называют общим наименованием - нуклон и говорят, что нуклон может находиться в двух состояниях: протон и нейтрон, отличающихся своим отношением к электромагнитному полю.

    Нейтроны и протоны взаимодействуют благодаря существованию ядерных сил, имеющих неэлектрическую природу. Своим происхождением ядерные силы обязаны обмену мезонами. Если изобразить зависимость потенциальной энергии взаимодействия протона и нейтрона малых энергий от расстояния между ними то приближенно она будет иметь вид графика, представленного на рис. 5, а, т. е. имеет форму потенциальной ямы.

    Рис. 5. Зависимость потенциальной энергии взаимодействия от расстояния между нуклонами: а - для пар нейтрон - нейтрон или нейтрон - протон; б - для пары протон - протон

    Нейтрон (элементарная частица)

    Данная статья была написана Владимиром Горунович для сайта "Викизнание", помещена на этот сайт в целях защиты информации от вандалов, а затем дополнена на этом сайте.

    Полевая теория элементарных частиц, действуя в рамках НАУКИ, опирается на проверенный ФИЗИКОЙ фундамент:

    • Классическую электродинамику,
    • Квантовую механику,
    • Законы сохранения - фундаментальные законы физики.

    В этом принципиальное отличие научного подхода, использованного полевой теорией элементарных частиц - подлинная теория должна строго действовать в рамках законов природы: в этом и заключается НАУКА.

    Использовать не существующие в природе элементарные частицы, выдумывать не существующие в природе фундаментальные взаимодействия, или подменять существующие в природе взаимодействия сказочными, игнорировать законы природы, занимаясь математическими манипуляциями над ними (создавая видимость науки) - это удел СКАЗОК, выдаваемых за науку. В итоге физика скатывалась в мир математических сказок.

      1 Радиус нейтрона
      2 Магнитный момент нейтрона
      3 Электрическое поле нейтрона
      4 Масса покоя нейтрона
      5 Время жизни нейтрона
      6 Новая физика: Нейтрон (элементарная частица) - итог

    Нейтрон - элементарная частица квантовое число L=3/2 (спин = 1/2) - группа барионов, подгруппа протона, электрический заряд +0 (систематизация по полевой теории элементарных частиц).

    Согласно полевой теории элементарных частиц (теории - построенной на научном фундаменте и единственной получившей правильный спектр всех элементарных частиц), нейтрон состоит из вращающегося поляризованного переменного электромагнитного поля с постоянной составляющей. Все голословные утверждения Стандартной модели о том, что нейтрон якобы состоит из кварков, не имеют ничего общего с действительностью . - Физика экспериментально доказала, что нейтрон обладает электромагнитными полями (нулевая величина суммарного электрического заряда, еще не означает отсутствие дипольного электрического поля, что косвенно вынуждена была признать даже Стандартная модель, введя электрические заряды у элементов структуры нейтрона), и еще гравитационным полем. О том, что элементарные частицы не просто обладают - а состоят из электромагнитных полей, физика гениально догадалась еще 100 лет назад, но вот построить теорию никак не удавалось до 2010 года. Теперь в 2015 году появилась еще и теория гравитации элементарных частиц, установившая электромагнитную природу гравитации и получившая уравнения гравитационного поля элементарных частиц, отличные от уравнений гравитации, на основании которых была построена не одна математическая сказка в физике.

    Структура электромагнитного поля нейтрона (E-постоянное электрическое поле,H-постоянное магнитное поле, желтым цветом отмечено переменное электромагнитное поле).

    Энергетический баланс (процент от всей внутренней энергии):

    • постоянное электрическое поле (E) - 0,18%,
    • постоянное магнитное поле (H) - 4,04%,
    • переменное электромагнитное поле - 95,78%.

    Наличие мощного постоянного магнитного поля объясняет обладание нейтроном ядерными силами. Структура нейтрона приведена на рисунке.

    Несмотря на нулевой электрический заряд, нейтрон обладает дипольным электрическим полем.

    1 Радиус нейтрона

    Полевая теория элементарных частиц определяет радиус (r) элементарной частицы как расстояние от центра до точки в которой достигается максимум плотности массы.

    Для нейтрона это будет 3,3518 ∙10 -16 м. К этому надо добавить еще толщину слоя электромагнитного поля 1,0978 ∙10 -16 м.

    Тогда получится 4,4496 ∙10 -16 м. Таким образом, внешняя граница нейтрона должна находиться от центра на расстоянии более 4,4496 ∙10 -16 м. Получилась величина почти равная радиусу протона и это не удивительно. Радиус элементарной частицы определяется квантовым числом L и величиной массы покоя. У обеих частиц одинаковый набор квантовых чисел L и M L , а массы покоя незначительно отличаются.

    2 Магнитный момент нейтрона

    В противовес квантовой теории полевая теория элементарных частиц утверждает, что магнитные поля элементарных частиц не создаются спиновым вращение электрический зарядов, а существуют одновременно с постоянным электрическим полем как постоянная составляющая электромагнитного поля. Поэтому магнитные поля есть у всех элементарных частиц с квантовым числом L>0.

    Полевая теория элементарных частиц не считает магнитный момент нейтрона аномальным - его величина определяется набором квантовых чисел в той степени, в какой квантовая механика работает в элементарной частице.

    Так магнитный момент нейтрона создается током:

    • (0) с магнитным моментом -1 eħ/m 0n c

    Далее умножаем его на процент энергии переменного электромагнитного поля нейтрона разделенный, на 100 процентов, и переводим в ядерные магнетоны. При этом не следует забывать, что ядерные магнетоны учитывают массу протона (m 0p), а не нейтрона (m 0n), так что полученный результат надо умножить на отношение m 0p /m 0n . В итоге получим 1,91304.

    3 Электрическое поле нейтрона

    Несмотря на нулевой электрический заряд, согласно полевой теории элементарных частиц у нейтрона должно быть постоянное электрическое поле. У электромагнитного поля, из которого состоит нейтрон, имеется постоянная составляющая, а, следовательно, у нейтрона должны быть постоянное магнитное поле и постоянное электрическое поле. Поскольку электрический заряд равен нулю то постоянное электрическое поле будет дипольным. То есть у нейтрона должно быть постоянное электрическое поле аналогичное полю двух распределенных параллельных электрических зарядов равных по величине и противоположного знака. На больших расстояниях электрическое поле нейтрона будет практически незаметно из-за взаимной компенсации полей обоих знаков заряда. Но на расстояниях порядка радиуса нейтрона это поле будет оказывать существенное влияние на взаимодействия с другими элементарными частицами близких по размерам. Это, прежде всего, касается взаимодействия в атомных ядрах нейтрона с протоном и нейтрона с нейтроном. Для нейтрон - нейтронного взаимодействия это будут силы отталкивания при одинаковом направлении спинов и силы притяжения при противоположном направлении спинов. Для нейтрон - протонного взаимодействия знак силы зависит не только от ориентации спинов, но еще и от смещения между плоскостями вращения электромагнитных полей нейтрона и протона.

    Итак, у нейтрона должно быть дипольное электрическое поле двух распределенных параллельных симметричных кольцевых электрических зарядов (+0.75e и -0.75e), среднего радиуса , расположенных на расстоянии

    Электрический дипольный момент нейтрона (согласно полевой теории элементарных частиц) равен:

    где ħ - постоянная Планка, L - главное квантовое число в полевой теории элементарных частиц, e - элементарный электрический заряд, m 0 - масса покоя нейтрона, m 0~ - масса покоя нейтрона, заключенная в переменном электромагнитном поле, c - скорость света, P - вектор электрического дипольного момента (перпендикулярен плоскости нейтрона, проходит через центр частицы и направлен в сторону положительного электрического заряда), s - среднее расстояние между зарядами, r e - электрический радиус элементарной частицы.

    Как видите, электрические заряды близки по величине к зарядам предполагаемых кварков (+2/3e=+0.666e и -2/3e=-0.666e) в нейтроне, но в отличие от кварков, электромагнитные поля в природе существуют, и аналогичной структурой постоянного электрического поля обладает любая нейтральная элементарная частица, независимо от величины спина и... .

    Потенциал электрического дипольного поля нейтрона в точке (А) (в ближней зоне 10s > r > s приблизительно), в системе СИ равен:

    где θ - угол между вектором дипольного момента P и направлением на точку наблюдения А, r 0 - нормировочный параметр равный r 0 =0.8568Lħ/(m 0~ c), ε 0 - электрическая постоянная, r - расстояние от оси (вращения переменного электромагнитного поля) элементарной частицы до точки наблюдения А, h - расстояние от плоскости частицы (проходящей через ее центр) до точки наблюдения А, h e - средняя высота расположения электрического заряда в нейтральной элементарной частице (равна 0.5s), |...| - модуль числа, P n - величина вектора P n . (В системе СГС отсутствует множитель .)

    Напряженность E электрического дипольного поля нейтрона (в ближней зоне 10s > r > s приблизительно), в системе СИ равна:

    где n =r /|r| - единичный вектор из центра диполя в направлении точки наблюдения (А), точкой (∙) обозначено скалярное произведение, жирным шрифтом выделены вектора. (В системе СГС отсутствует множитель .)

    Компоненты напряженности электрического дипольного поля нейтрона (в ближней зоне 10s>r>s приблизительно) продольная (| |) (вдоль радиус-вектора, проведенного от диполя в данную точку) и поперечная (_|_) в системе СИ:

    где θ - угол между направлением вектора дипольного момента P n и радиус-вектором в точку наблюдения (в системе СГС отсутствует множитель ).

    Третья компонента напряженности электрического поля - ортогональная плоскости, в которой лежат вектор дипольного момента P n нейтрона и радиус-вектор, - всегда равна нулю.

    Потенциальная энергия U взаимодействия электрического дипольного поля нейтрона (n) с электрическим дипольным полем другой нейтральной элементарной частицы (2) в точке (А) в дальней зоне (r>>s), в системе СИ равна:

    где θ n2 - угол между векторами дипольных электрических моментов P n и P 2 , θ n - угол между вектором дипольного электрического момента P n и вектором r , θ 2 - угол между вектором дипольного электрического моментаP 2 и вектором r , r - вектор из центра дипольного электрического момента p n в центр дипольного электрического момента p 2 (в точку наблюдения А). (В системе СГС отсутствует множитель )

    Нормировочный параметр r 0 вводится с целью уменьшения отклонения значения E, от рассчитанного с помощью классической электродинамики и интегрального исчисления в ближней зоне. Нормировка происходит в точке, лежащей в плоскости параллельной плоскости нейтрона, удаленной от центра нейтрона на расстояние (в плоскости частицы) и со смещением по высоте на h=ħ/2m 0~ c, где m 0~ - величина массы заключенной в переменном электромагнитном поле покоящегося нейтрона (для нейтрона m 0~ = 0.95784 m. Для каждого уравнения параметр r 0 рассчитывается самостоятельно. В качестве приблизительного значения можно взять полевой радиус:

    Из всего вышесказанного следует, что электрическое дипольное поле нейтрона (о существовании которого в природе, физика 20 века и не догадывалась), согласно законам классической электродинамики, будет взаимодействовать с заряженными элементарными частицами .

    4 Масса покоя нейтрона

    В соответствии с классической электродинамикой и формулой Эйнштейна, масса покоя элементарных частиц с квантовым числом L>0, в том числе и нейтрона, определяется как эквивалент энергии их электромагнитных полей:

    где определенный интеграл берется по всему электромагнитному полю элементарной частицы, E - напряженность электрического поля, H - напряженность магнитного поля. Здесь учитываются все компоненты электромагнитного поля: постоянное электрическое поле (которое у нейтрона есть), постоянное магнитное поле, переменное электромагнитное поле. Эта маленькая, но очень емкая для физики формула, на основании которой получены уравнения гравитационного поля элементарных частиц, отправит в утиль не одну сказочную "теорию" - поэтому ее возненавидят некоторые их авторы.

    Как следует из приведенной формулы, величина массы покоя нейтрона зависит от условий, в которых нейтрон находится . Так поместив нейтрон в постоянное внешнее электрическое поле (например, атомное ядро), мы повлияем на E 2 , что отразится на массе нейтрона и его стабильности. Аналогичная ситуация возникнет при помещении нейтрона в постоянное магнитное поле. Поэтому некоторые свойства нейтрона внутри атомного ядра, отличаются от тех же свойств свободного нейтрона в вакууме, вдали от полей.

    5 Время жизни нейтрона

    Установленное физикой время жизни 880 секунд соответствует свободному нейтрону.

    Полевая теория элементарных частиц утверждает, что время жизни элементарной частицы зависит от условий, в которых она находится. Поместив нейтрон во внешнее поле (например, магнитное) мы изменяем энергию, содержащуюся в его электромагнитном поле. Можно выбрать направление внешнего поля так, чтобы внутренняя энергия нейтрона уменьшилась. В результате при распаде нейтрона выделится меньше энергии, что затруднит распад и увеличит время жизни элементарной частицы. Можно подобрать такую величину напряженности внешнего поля, что распад нейтрона будет требовать дополнительной энергии и, следовательно, нейтрон станет стабильным. Именно это наблюдается в атомных ядрах (например, дейтерия), в них магнитное поле соседних протонов не допускает распад нейтронов ядра. В прочем при внесении в ядро дополнительной энергии распады нейтронов вновь могут стать возможными.

    6 Новая физика: Нейтрон (элементарная частица) - итог

    Стандартная модель (опущенная в данной статье, но которая в 20 веке претендовала на истину) утверждает, что нейтрон является связанным состоянием трёх кварков: одного "верхнего" (u) и двух "нижних" (d) кварков (предполагаемая кварковая структура нейтрона: udd). Поскольку наличие кварков в природе экспериментально не доказано, электрический заряд, равный по величине заряду гипотетических кварков в природе не обнаружен, а имеются лишь косвенные свидетельства, которые можно интерпретировать как наличие следов кварков в некоторых взаимодействиях элементарных частиц, но можно и интерпретировать иначе, то утверждение Стандартной модели, что нейтрон обладает кварковой структурой остается всего лишь бездоказательным предположением. Любая модель, в том числе и Стандартная вправе предположить любую структуру элементарных частиц включая нейтрона, но пока на ускорителях не будут обнаружены соответствующие частицы, из которых якобы состоит нейтрон, утверждение модели следует считать не доказанным.

    Стандартная модель, описывая нейтрон, вводит не найденные в природе кварки с глюонами (глюоны тоже никто не нашел), не существующие в природе поля и взаимодействия и вступает в противоречие с законом сохранения энергии;

    Полевая теория элементарных частиц (Новая физика) описывает нейтрон исходя из существующих в природе полей и взаимодействий в рамках, действующих в природе законов - в этом и заключается НАУКА.

    Владимир Горунович

    Группа исследователей из Американского национального института стандартов и технологий обновила свои результаты измерения времени жизни нейтрона в эксперименте с нейтронным пучком. Их значение стало еще сильнее отличаться от результатов, полученных в нейтронных ловушках. В чем причина этого расхождения - пока неясно.

    Нестыкующиеся измерения

    Экспериментальная физика занимается не только изучением каких-то сложных эффектов, но и аккуратным измерением простых и универсальных параметров. Эти параметры характеризуют то или иное свойство нашего мира, они могут встречаться в описании разных явлений, поэтому очень полезно их знать как можно точнее. Такие измерения, вследствие своей важности, часто проводятся несколькими группами исследователей и разными экспериментальными методами.

    К сожалению, иногда возникает ситуация, когда измерения разных групп или измерения разными методами дают существенно отличающиеся результаты. Сразу же подчеркнем: речь идет не о расхождении теории с экспериментом, а о расхождении между разными результатами измерений. Для физика-экспериментатора такие ситуации - источник постоянной головной боли («где же я ошибся, что же я не углядел?»), для теоретика-оптимиста - повод поупражняться в придумывании новых физических явлений, которые могли бы тоже играть тут роль. Такие ситуации, конечно, происходят регулярно и являются частью естественного процесса экспериментального изучения нашего мира. Они могут оказаться очень полезными с точки зрении истории физики - по крайней мере после того, как физики наконец-то разберутся в источниках проблем. Но при взгляде изнутри ситуации , когда проблема еще не решена, они всё же неприятны: непонятно, что именно и где именно сбоит, непонятно, какому методу можно доверять, а какому - нет, да и внимание теоретиков иногда отвлекается от других задач.

    Конечно, никто не требует, чтобы результаты измерений буквально совпадали друг с другом. Совершенно нормально, когда они различаются в рамках заявленных погрешностей измерений - на одну-две величины погрешности (на научном языке, на одну-две «сигмы»). Такое расхождение может произойти чисто случайно, и нет никаких оснований видеть тут серьезное отличие. Когда измеренные величины различаются на 3 сигмы - это уже повод для беспокойства, на 5 сигм - повод для очень серьезного беспокойства (см. подробности на страничке Что такое «сигма»?). И снова подчеркнем: это беспокойство относится не к самой величине, а к методам измерения, к (не)пониманию экспериментаторами своей установки либо метода измерения и обработки данных.

    Особенно драматична ситуация, когда с течением времени погрешности каждого отдельного эксперимента уменьшаются, но различие между ними остается. В этом случае расхождение между ними, выраженное в единицах сигма, растет со временем.

    Есть несколько примеров такой ситуации в современной физике. Видимо, самая впечатляющая - это гравитационная постоянная, где нестыковка между четырьмя точными измерениями уже превышает 10 сигм; см. подробности в новости Новые измерения гравитационной постоянной еще сильнее запутывают ситуацию , «Элементы», 13.09.2013. Другой пример - недавние измерения новым методом зарядового радиуса протона с результатом, отличающимся от общепринятого значения на 7 сигм. Еще одна «проблемная величина» - это время жизни нейтрона, где бурные изменения произошли в последние несколько лет. И вот сейчас, когда казалось уже, что ситуация успокоилась, в журнале Physical Review Letters вышла , подливающая масла в огонь.

    Время жизни нейтрона: предыстория

    Нейтрон - самая долгоживущая из нестабильных элементарных частиц. В свободном состоянии он живет очень долго, почти 15 минут, и распадается за счет слабого взаимодействия на протон, электрон и антинейтрино. Внутри ядра он может стать как совершенно стабильным, так и очень нестабильным; эти ядерные эффекты мы здесь не обсуждаем. Еще подчеркнем, что речь тут идет о времени жизни в системе отсчета самой частицы; если частица движется с околосветовой скоростью, ее время жизни может сильно увеличиться (см. по этому поводу задачу про время жизни фотона). Время жизни нейтрона - величина, очень важная как для физики частиц и атомного ядра, так и для астрофизики. Неудивительно, что его принялись измерять почти сразу после того, как экспериментаторы научились получать и регистрировать свободные нейтроны, ну и, конечно, отвлеклись от задач, связанных с военными применениями - всё же происходило это в 40-е годы.

    Поначалу все эксперименты делались только с нейтронами, вылетающими из реактора. Из-за того что нейтроны живут долго, а летят из реактора быстро, измерить их уменьшение с течением времени нереально. Зато можно убедиться, что нейтроны распадаются, поскольку датчики, установленные поодаль от реактора, регистрировали иногда приходящие почти одновременно протоны и электроны. Если знать нейтронный поток, измерить частоту таких срабатываний и разобраться с угловыми характеристиками, то можно оценить и время жизни нейтрона. Первые оценки 1950 года давали время жизни от 13 до 40 минут; год спустя было было опубликовано первое настоящее измерение с результатом 1110 ± 220 с.

    В течение последующих трех десятилетий измерения становились всё более и более точными (см. рис. 1) и постепенно сошлись на значении около 900 секунд с погрешностью 1–2%. В схему эксперимента было внедрено много усовершенствований, но общий подход оставался неизменным: измерялось не уменьшение количества нейтронов со временем, а радиоактивность пролетающего мимо нейтронного пучка. Такой метод так и называется - пучковый.

    Несколько лет ситуация оставалась подвешенной. Авторы «революционного» измерения не ограничились предъявлением только своих результатов, но и тщательно рассмотрели методики, использованные в других ловушечных экспериментах, и указали на возможные источники неточностей и систематического смещения результатов. В своей статье 2010 года два ключевых автора провели общий анализ всех имевшихся на тот момент данных и предложили снизить официально среднее значение практически до своего результата. Коллектив Particle Data Group , который занимается такими усреднениями, в этой ситуации воздержался от суждений. В его отчете за 2010 год осталось старое общепринятое число, но оно сопровождалось такой припиской:

    Новый результат Серебров и др. (2005) настолько сильно отличается от остальных, что нет смысла пытаться включать его в общее усреднение. Разобраться с этой ситуацией должны эксперты, а до тех пор наше усредненное значение 885,7 ± 0,8 с следует воспринимать с долей скептицизма.

    Авторы предыдущих измерений прислушались к критике группы Сереброва, провели новый анализ погрешностей и действительно вынуждены были пересмотреть свои результаты. В их новых публикациях уже фигурируют числа от 880 до 882 секунд. При этом авторы работы 2000 года - той самой, в которой впервые была достигнута общая погрешность меньше 1 секунды, - были вынуждены в 2012 году эту погрешность резко увеличить. Можно сказать, что группа Сереброва в этом вопросе одержала полную и безоговорочную победу. Она не только в одиночку «переборола» несколько результатов других групп, но и способствовала нахождению у них ошибок. В настоящее время это измерение 2005 года является единственным с полной погрешностью меньше 1 секунды.

    Завершающим аккордом стал пересмотр общепринятого значения от Particle Data Group в отчете 2012 года. Нынешнее значение равно 880,0 ± 0,9 с . Это редкий случай, когда PDG пересматривает значение какой-то величины, резко и сильно смещая его практически без изменения погрешности.

    Текущая ситуация

    Можно ли сказать, что ситуация сейчас полностью разрешена? Пока нет. Некоторый консенсус сейчас достигнут между несколькими экспериментами, использующими, по сути, один и тот же инструмент - материальную ловушку нейтронов. Как показала история развития ситуации, в этом методе есть много подводных камней, и никто пока не может гарантировать, что все они обнаружены. Для примера скажем, что в 2009 году вышла с указанием на еще один возможный источник погрешности, связанный с диффузным рассеянием нейтронов на шероховатой поверхности ловушки, однако группа Сереброва на эту критику оперативно отреагировала . Впрочем, в последней версии статьи появилась реакция и на этот ответ. Так или иначе, обсуждения продолжаются. А поэтому для большей уверенности, что всё под контролем, желательно убедиться, что такое же значение времени жизни получается в магнитных ловушках, а также в пучковых экспериментах.

    С магнитными ловушками ситуация пока не вполне ясна. С одной стороны, еще в 2007 году было получено значение, близкое к нынешнему «официальному», но результаты там, строго говоря, остаются предварительными. Месяц назад в архиве е-принтов появилась статья D. J. Salvat et al. Storage of ultracold neutrons in the UCNτ magneto-gravitational trap , в которой описывается первое измерение времени жизни нейтрона в новой магнитно-гравитационной ловушке, построенной в Лос-Аламосской национальной лаборатории в США. Первое измерение на очень низкой статистике дало значение 860 ± 19 с, то есть точность тут пока слишком низка для каких-то существенных выводов. Авторы вскоре увеличат статистку и тем самым намереваются достичь точности аж в 0,1 секунды. Существуют и другие нейтронные ловушки, на которых исследователи попробуют добиться сравнимой точности.

    Что касается пучковых экспериментов, то здесь расхождение остается невыясненным. На днях в журнале Physical Review Letters вышла с улучшенной версией пучкового эксперимента, проводимого в NIST. Новый эксперимент проводился по технологии, описанной в публикации 2005 года (см. рис. 2), только сейчас была усовершенствована методика измерения нейтронного потока, что позволило уменьшить погрешность. Улучшенный результат составляет 887,7 ± 1,2 ± 1,9 с . Он согласуется со старым значением той же группы и существенно расходится с последними ловушечными результатами.

    Различие тут пока не столь драматическое, всего 3,8 сигмы, но - как показала вся эта история - отбрасывать его ни в коем случае не следует. Оно является указанием на то, что какой-то из методов принимает во внимание не все тонкости, но какой - пока не ясно. Конечно, в идеале хотелось бы получить аналогичное пучковое измерение и другой, независимой от NIST группы. К сожалению, в последние годы упор в этом вопросе смещается всё больше и больше к ловушечным экспериментам с нейтронами. Так или иначе, ситуация пока требует разъяснения.

    Масса нейтрона может быть определена различными способами. Первое определение m n было сделано Чэдвиком по измерению энергии ядер отдачи, образующихся при столкновении нейтронов с ядрами водорода и азота. Этот метод позволил определить лишь то, что масса нейтрона примерно равна массе протона.

    Нейтрон не имеет заряда, поэтому обычные методы определения массы атомов (масс-спектроскопия, химические методы) к нейтрону не применимы. Все измерения массы нейтрона основывались на методе анализа энергетического баланса различных ядерных реакций с участием нейтронов. Вскоре после открытия нейтрона для определения его массы были использованы в реакциях 11 B(α,n) 14 N и 7 Li(α,n) 10 B.

    В настоящее время разница масс протона и нейтрона достаточно точно определена с помощью эндоэнергетической реакции 3 H+p→n+ 3 He и методом, основанным на измерении разницы масс дейтрона и молекулы водорода, а также энергии связи дейтрона. Для реакции 3 H(p,n) 3 He закон сохранения энергии можно записать в виде

    где Q – энергия реакции, а под обозначениями атомов и частиц следует понимать их энергию покоя. С помощью соотношения для энергии реакции

    Q=(m 2 /(m 1 +m 2))*E T *(1-0.5(m 2 E T /((m 1 +m 2) 2 *c 2))), (2)

    Где m 1 и m 2 – массы протона и тритона. Было найдено значение Q=-(763,77±0,08) кэВ .

    Разность масс нейтрона и атома водорода можно получить, зная максимальную энергию β -частиц E β при распаде трития:

    (m n -M H)c 2 =E β (1+m 0 /m 3)-Q+E H , (3)

    где m 3 – масса ядра 3 He; m 0 – масса покоя электрона; E H – энергия связи электрона в атоме водорода; M H – масса атома водорода, масса антинейтрино принята равной нулю. Усредняя известные данные, для E β можно найти значение (18,56±0,05) кэВ. В результате разность масс нейтрона и протона оказывается равной δm n - p =(1293,0±0,1) кэВ.

    Один из наиболее точных методов основан на использовании реакции радиационного захвата тепловых нейтронов протонами:

    Если протон неподвижен, то закон сохранения энергии для этой реакции

    T n , T d - кинетические энергии нейтрона и протона. При T n ≈ 0 (например, для тепловых нейтронов кинетическая энергия T n = 0,025 эВ) кинетической энергией нейтронов можно пренебречь. Исходя из закона сохранения импульса для кинетической энергии дейтрона можно получить следующее выражение; . В настоящее время энергия γ-квантов измерена с большой точностью E γ = 2223.25 кэВ. Энергия связи дейтрона . Массы протона и дейтрона m d и m p измеряются с хорошей точностью с помощью масс-спектрометра, оценка даёт величину T d = 1.3 кэВ. Отсюда можно вычислить массу нейтрона. Наиболее точное значение массы нейтрона равно (1981 г.): m n = 939,5731(27)МэВ. В скобках указана ошибка в двух последних цифрах.



    Масса нейтрона на 1.293 МэВ больше массы протона. Поэтому нейтрон является β -активной частицей с временем жизни 885.4 секунды. В свободном состоянии нейтроны практически отсутствуют, если не считать небольшого количества, рождающегося под действием космических лучей.

    Процесс β-распада свободного нейтрона можно представить в виде:

    Этот процесс энергетически возможен, так как суммарная масса частиц, входящих в правую часть уравнения, меньше массы нейтрона. В кварковой модели распад нейтрона является следствием более фундаментального процесса превращения d-кварка: d→u+e - + . Изучение β-распада свободного нейтрона дает возможность получить информацию о слабом взаимодействии, ответственном за его распад. При этом, то обстоятельство, что изучается распад элементарной частицы, позволяет избавиться от влияния на процесс распада ядерных эффектов.

    Измерение времени жизни нейтрона по отношению к β-распаду дает ценную информацию для физики слабых взаимодействий, астрофизики и космологии. В космологии период полураспада нейтрона прямо связан со скоростью образования гелия в начальном периоде существования Вселенной. Знание периода полураспада нейтрона необходимо для правильного понимания физических процессов, идущих на Солнце.

    Электрический заряд нейтрона с огромной степенью точности (~10 -20 е , е - заряд электрона) равен нулю. Отличие от нуля магнитного момента нейтрона свидетельствует о его внутренней структуре. Для исследования структуры нуклонов необходимо, чтобы де-бройлевская длина волны (λ= 2 ћ/p) зондирующих частиц была мала по сравнению с размерами нуклонов. Эти условия оказалось возможным выполнить с помощью рассеяния на нуклонах быстрых электронов (~100 МэВ).



    Нейтрон может обладать дипольным моментом. Это возможно, если в природе не выполняется инвариантность по отношению к обращению времени.

    Хотя нейтрон в целом нейтрален, он имеет сложное внутреннее распределение заряда, что проявляется во взаимодействии нейтронов с электронами.

    Можно подвести итог первой главы.

    Нейтрон – это нейтральная (z = 0) дираковская частица со спином и отрицательным магнитным моментом (в единицах ядерного магнитного момента) , который в основном определяет электромагнитное взаимодействие нейтрона. Так же, как и протону, нейтрону приписывают единичный барионный заряд Y n = +1 и положительную четность P n =+1.

    Масса нейтрона составляет m n = 1,00866491578 ± 0.00000000055 а.е.м. = 939,56633 ± 0.00004 МэВ, что на 1,2933318 ± 0.0000005 МэВ больше массы протона. В связи с этим нейтрон является β -радиоактивной частицей. С временем жизни τ = 885.4 ± 0.9(стат.) ± 0.4(сист.) сек он распадается по схеме (7). Здесь приведены данные 2000 г.