Войти
Русь. История России. Современная Россия
  • Что изучает социальная психология
  • Океан – наше будущее Роль Мирового океана в жизни Земли
  • Ковер из Байё — какие фильмы смотрели в Средние века
  • Библиотека: читающий малыш
  • Всадник без головы: главные герои, краткая характеристика
  • 3 стили речи. Стили текста. Жанры текста в русском языке. §2. Языковые признаки научного стиля речи
  • Опыт определение центра тяжести тела неправильной формы. Положения центра тяжести некоторых фигур. В результате изучения темы студент должен

    Опыт определение центра тяжести тела неправильной формы. Положения центра тяжести некоторых фигур. В результате изучения темы студент должен

    Прямоугольник. Так как прямоугольник имеет две оси симметрии, то его центр тяжести находится на пересечении осей симметрии, т.е. в точке пересечения диагоналей прямоугольника.

    Треугольник. Центр тяжести лежит в точке пересечения его медиан. Из геометрии известно, что медианы треугольника пересекаются в одной точке и делятся в отношении 1:2 от основания.

    Круг. Так как круг имеет две оси симметрии, то его центр тяжести находится на пересечении осей симметрии.

    Полукруг. Полукруг имеет одну ось симметрии, то центр тяжести лежит на этой оси. Другая координата центра тяжести вычисляется по формуле: .

    Многие конструктивные элементы изготавливают из стандартного проката – уголков, двутавров, швеллеров и других. Все размеры, а так же геометрические характеристики прокатных профилей это табличные данные, которые можно найти в справочной литературе в таблицах нормального сортамента (ГОСТ 8239-89, ГОСТ 8240-89).

    Пример 1. Определить положение центра тяжести фигуры, представленной на рисунке.

    Решение:

      Выбираем оси координат, так чтобы ось Ох прошла по крайнему нижнему габаритному размеру, а ось Оу – по крайнему левому габаритному размеру.

      Разбиваем сложную фигуру на минимальное количество простых фигур:

      прямоугольник 20х10;

      треугольник 15х10;

      круг R=3 см.

      Вычисляем площадь каждой простой фигуры, её координаты центра тяжести. Результаты вычислений заносим в таблицу

    № фигуры

    Площадь фигуры А,

    Координаты центра тяжести

    Ответ: С(14,5; 4,5)

    Пример 2 . Определить координаты центра тяжести составного сечения, состоящего из листа и прокатных профилей.

    Решение.

      Выбираем оси координат, так как показано на рисунке.

      Обозначим фигуры номерами и выпишем из таблицы необходимые данные:

    № фигуры

    Площадь фигуры А,

    Координаты центра тяжести

      Вычисляем координаты центра тяжести фигуры по формулам:

    Ответ: С(0; 10)

    Лабораторная работа №1 «Определение центра тяжести составных плоских фигур»

    Цель: Определить центр тяжести заданной плоской сложной фигуры опытным и аналитическим способами и сравнить их результаты.

    Порядок выполнения работы

      Начертить в тетрадях свою плоскую фигуру по размерам, с указанием осей координат.

      Определить центр тяжести аналитическим способом.

      1. Разбить фигуру на минимальное количество фигур, центры тяжести которых, мы знаем, как определить.

        Указать номера площадей и координаты центра тяжести каждой фигуры.

        Вычислить координаты центра тяжести каждой фигуры.

        Вычислить площадь каждой фигуры.

        Вычислить координаты центра тяжести всей фигуры по формулам (положение центра тяжести нанести на чертеж фигуры):

    Установка для опытного определения координат центра тяжести способом подвешивания состоит из вертикальной стойки 1 (см. рис.), к которой прикреплена игла 2 . Плоская фигура 3 изготовлена из картона, в котором легко проколоть отверстие. Отверстия А и В прокалываются в произвольно расположенных точках (лучше на наиболее удаленном расстоянии друг от друга). Плоская фигура подвешивается на иглу сначала в точке А , а потом в точке В . При помощи отвеса 4 , закрепленного на той же игле, на фигуре прочерчивают карандашом вертикальную линию, соответствующую нити отвеса. Центр тяжести С фигуры будет находиться в точке пересечения вертикальных линий, нанесенных при подвешивании фигуры в точках А и В .

    Конспект урока по физике 7 класс

    Тема: Определение центра тяжести

    Учитель физики МОУ Аргаяшская СОШ №2

    Хидиятулина З.А.

    Лабораторная работа:

    «Определение центра тяжести плоской пластины»

    Цель : нахождение центра тяжести плоской пластины.

    Теоретическая часть:

    Центр тяжести есть у всех тел. Центром тяжести тела называется точка, относительно которой суммарный момент сил тяжести, действующих на тело, равен нулю. Например, если подвесить предмет за его центр тяжести, то он останется в покое. То есть, его положение в пространстве не изменится (он не перевернётся вверх ногами или на бок). Почему одни тела опрокидываются, а другие — нет? Если из центра тяжести тела провести линию, перпендикулярную полу, то в случае, когда линия выходит за границы опоры тела, тело упадёт. Чем больше площадь опоры, чем ближе расположен центр тяжести тела к центральной точке площади опоры и центральной линии центра тяжести, тем более устойчивым будет положение тела. Например, центр тяжести знаменитой Пизанской башни расположен всего в двух метрах от середины её опоры. А падение случится лишь тогда, когда это отклонение составит около 14 метров. Центр тяжести тела человека находится примерно на 20,23 сантиметра ниже пупка. Воображаемая линия, проведённая отвесно из центра тяжести, проходит ровно между ступнями. У куклы-неваляшки секрет заключается также в центре тяжести тела. Её устойчивость объясняется тем, что центр тяжести у неваляшки находится в самом низу, она фактически стоит на нём. Условием сохранения равновесия тела является прохождение вертикальной оси его общего центра тяжести внутри площади опоры тела. Если вертикаль центра тяжести тела выходит из площади опоры, тело теряет равновесие и падает. Поэтому чем больше площадь опоры, чем ближе расположен центр тяжести тела к центральной точке площади опоры и центральной линии центра тяжести, тем более устойчивым будет положение тела. Площадь опоры при вертикальном положении человека ограничена тем пространством, которое находится под подошвами и между стопами. Центральная точка отвесной линии центра тяжести на стопе находится на 5 см впереди от пяточного бугра. Сагиттальный размер площади опоры всегда преобладает над фронтальным, поэтому и смещение отвесной линии центра тяжести легче происходит вправо и влево, чем назад, а особенно трудно — вперед. В связи с этим устойчивость на поворотах при быстром беге значительно меньше, чем в сагиттальном направлении (вперед или назад). Нога в обуви, особенно с широким каблуком и жесткой подошвой, устойчивее, чем без обуви, так как приобретает большую площадь опоры.

    Практическая часть:

    Цель работы: Используя предложенное оборудование, опытным путём найти положение центра тяжести двух фигур из картона и треугольника.

    Оборудование: Штатив, плотный картон, треугольник из школьного набора, линейка, скотч, нить, карандаш..

    Задание 1: Определите положение центра тяжести плоской фигуры произвольной формы

    С помощью ножниц вырежьте из картона фигуру произвольной формы. Скотчем прикрепите к ней нить в точке А. Подвесьте фигуру за нить к лапке штатива. С помощью линейки и карандаша отметьте на картоне линию вертикали АВ.

    Переместите точку крепления нити в положение С. Повторите описанные действия

    Точка О пересечения линий АВ и CD даёт искомое положение центра тяжести фигуры.

    Задание 2: Пользуясь только линейкой и карандашом, найдите положение центра тяжести плоской фигуры

    С помощью карандаша и линейки разбейте фигуру на два прямоугольника. Построением найдите положения О1 и О2 их центров тяжести. Очевидно, что центр тяжести всей фигуры находится на линии О1О2

    Разбейте фигуру на два прямоугольника другим способом. Построением найдите положения центров тяжести О3 и О4 каждого из них. Соедините точки О3 и О4 линией. Точка пересечения линий О1О2 и О3О4 определяет положение центра тяжести фигуры

    Задание 2: Определите положение центра тяжести треугольника

    С помощью скотча закрепите один из концов нити в вершине треугольника и подвесьте его к лапке штатива. С помощью линейки отметьте направление АВ линии действия силы тяжести (сделайте отметку на противоположной стороне треугольника)

    Повторите аналогичную процедуру, подвесив треугольник за вершину С. На противоположной вершине С стороне треугольника сделайте отметку D .

    С помощью скотча прикрепите к треугольнику отрезки нитей АВ и CD . Точка О их пересечения определяет положение центра тяжести треугольника. В данном случае центр тяжести фигуры находится вне пределов самого тела.

    III . Решение качественных задач

    1.С какой целью цирковые артисты при хождении по канату держат в руках тяжелые шесты?

    2.Почему человек, несущий на спине тяжелый груз, наклоняется вперед?

    3.Почему нельзя встать со стула, если не наклонить корпус вперед?

    4.Почему подъемный кран не опрокидывается в сторону поднимаемого груза? Почему без груза кран не опрокидывается в сторону противовеса?

    5.Почему у автомашин и велосипедов и т.п. тормоза лучше ставить на задние, а не на передние колеса?

    6.Почему, грузовик нагруженный сеном легче переворачивается, чем тот же грузовик нагруженный снегом?

    Тема относительно проста для усвоения, однако крайне важна при изучении курса сопротивления материалов. Главное внимание здесь необходимо обратить на решение задач как с плоскими и геометрическими фигурами, так и со стандартными прокатными профилями.

    Вопросы для самоконтроля

    1. Что такое центр параллельных сил?

    Центр параллельных сил есть точка, че­рез которую проходит линия равнодействую­щей системы параллельных сил, прило­женных в заданных точках, при любом изменении на­правления этих сил в простран­стве.

    2. Как найти координаты центра параллельных сил?

    Для определения координат центра параллельных сил воспользуемся теоремой Вариньона.

    Относительно оси x

    M x (R) = ΣM x (F k) , - y C R = Σy kFk и y C = Σy kFk /Σ Fk .

    Относительно оси y

    M y (R) = ΣM y (F k) , - x C R = Σx kFk и x C = Σx kFk /Σ Fk .

    Чтобы определить координату z C , повернем все силы на 90° так, чтобы они стали параллельны оси y (рисунок 1.5, б). Тогда

    M z (R) = ΣM z (F k) , - z C R = Σz kFk и z C = Σz kFk /Σ Fk .

    Следовательно, формула для определения радиус-вектора центра параллельных сил принимает вид

    r C = Σr kFk /Σ Fk .

    3. Что такое центр тяжести тела?

    Центр Тяжести- неизменно связанная с твердым телом точка, через которую проходит равнодействующая сил тяжести, действующих на частицы этого тела при любом положении тела в пространстве. У однородного тела, имеющего центр симметрии (круг, шар, куб и т. д.), центр тяжести находится в центре симметрии тела. Положение центра тяжести твердого тела совпадает с положением его центра масс.

    4. Как найти центр тяжести прямоугольника, треугольника, круга?

    Для нахождения центра тяжести треугольника, необходимо нарисовать треугольник – фигуру, состоящую из трех отрезков, соединенных между собой в трех точках. Перед тем, как найти центр тяжести фигуры, необходимо, используя линейку, измерить длину одной стороны треугольника. В середине стороны поставьте отметку, после чего противоположную вершину и середину отрезка соедините линией, которая называется медианой. Тот же самый алгоритм повторите со второй стороной треугольника, а затем и с третьей. Результатом вашей работы станут три медианы, которые пересекаются в одной точке, которая будет являться центром тяжести треугольника. Если необходимо определить центр тяжести круглого диска однородной структуры, то для начала найдите точку пересечения диаметров круга. Она и будет центром тяжести данного тела. Рассматривая такие фигуры, как шар, обруч и однородный прямоугольный параллелепипед, можно с уверенностью сказать, что центр тяжести обруча будет находиться в центре фигуры, но вне ее точек, центр тяжести шара - геометрический центр сферы, и в последнем случае, центром тяжестью считается пересечение диагоналей прямоугольногопараллелепипеда.

    5. Как найти координаты центра тяжести плоского составного сечения?

    Метод разбиения: если плоскую фигуру можно разбить на конечное число таких частей, для каждой из которых положение центра тяжести известно, то координаты центра тяжести всей фигуры опредляются по формулам:

    Х C = ( s k x k) / S; Y C = ( s k y k) / S,

    где x k , y k - координаты центров тяжести частей фигуры;

    s k - их площади;

    S = s k - площадь всей фигуры.

    6. Центр тяжести

    1. В каком случае для определения центра тяжести достаточно определить одну координату расчетным путем?

    В первом случае для определения центра тяжести достаточно определить одну координату Тело разбивается на конечное число частей, для каждой из которых положение центра тяжести C и площадь S известны. Например, проекцию тела на плоскость xOy (рисунок 1.) можно представить в виде двух плоских фигур с площадями S 1 и S 2 (S = S 1 + S 2 ). Центры тяжести этих фигур находятся в точках C 1 (x 1 , y 1) и C 2 (x 2 , y 2) . Тогда координаты центра тяжести тела равны

    Так как центры фигур лежат на оси ординат (х = 0), то находим только координату Ус .

    2 Как учитывается площадь отверстия в фигуре 4 в формуле для определения центра тяжести фигуры?

    Метод отрицательных масс

    Этот метод заключается в том, что тело, имеющее свободные полости, считают сплошным, а массу свободных полостей – отрицательной. Вид формул для определения координат центра тяжести тела при этом не меняется.

    Таким образом, при определении центра тяжести тела, имеющего свободные полости, следует применять метод разбиения, но считать массу полостей отрицательной.

    иметь представление о центре параллельных сил и его свойствах;

    знать формулы для определения координат центра тяжести плоских фигур;

    уметь определять координаты центра тяжести плоских фигур простых геометрических фигур и стандартных прокатных профилей.

    ЭЛЕМЕНТЫ КИНЕМАТИКИ И ДИНАМИКИ
    Изучив кинематику точки, обратите внимание на то, что прямолинейное движе­ние точки как неравномерное, так и равномерное всегда характеризуется наличием нормального (центростремительного) ускорения. При поступательном движении тела (характеризуемом движением любой его точки) применимы все формулы кинемати­ки точки. Формулы для определения угловых величин тела, вращающегося вокруг неподвижной оси, имеют полную смысловую аналогию с формулами для определе­ния соответствующих линейных величин поступательно движущегося тела.

    Тема 1.7. Кинематика точки
    При изучении темы обратите внимание на основные понятия кинематики: ускорение, скорость, путь, расстояние.

    Вопросы для самоконтроля

    1. В чем заключается относительность понятий покоя и движения?

    Механическое движение -это изменение движения тела, или (его частей) в пространстве относительно др. тел с течением времени. Полет брошенного камня, вращение колеса- примеры механического движения.

    2. Дайте определение основных понятий кинематики: траектории, расстоянию, пути, скорости, ускорению, времени.

    Скорость – это кинематическая мера движения точки, характеризующая быстроту изменения ее положения в пространстве. Скорость является векторной величиной, т. е. она характеризуется не только модулем (скалярной составляющей), но и направлением в пространстве.

    Как известно из физики, при равномерном движении скорость может быть определена длиной пути, пройденного за единицу времени: v = s/t = const (предполагается, что начало отсчета пути и времени совпадают). При прямолинейном движении скорость постоянна и по модулю, и по направлению, а ее вектор совпадает с траекторией.

    Единица скорости в системе СИ определяется соотношением длина/время, т. е. м/с.

    Ускорение есть кинематическая мера изменения скорости точки во времени. Другими словами - ускорение - это скорость изменения скорости.
    Как и скорость, ускорение является величиной векторной, т. е. характеризуется не только модулем, но и направлением в пространстве.

    При прямолинейном движении вектор скорости всегда совпадает с траекторией и поэтому вектор изменения скорости тоже совпадает с траекторией.

    Из курса физики известно, что ускорение представляет собой изменение скорости в единицу времени. Если за небольшой промежуток времени Δt скорость точки изменилась на Δv, то среднее ускорение за данный промежуток времени составило: а ср = Δv/Δt.

    Среднее ускорение не дает представление об истинной величине изменения скорости в каждый момент времени. При этом очевидно, что чем меньше рассматриваемый промежуток времени, во время которого произошло изменение скорости, тем ближе значение ускорения будет к истинному (мгновенному).
    Отсюда определение: истинное (мгновенное) ускорение есть предел, к которому стремится среднее ускорение при Δt, стремящемся к нулю:

    а = lim а ср при t→0 или lim Δv/Δt = dv/dt.

    Учитывая, что v = ds/dt, получим: а = dv/dt = d 2 s/dt 2 .

    Истинное ускорение в прямолинейном движении равно первой производной скорости или второй производной координаты (расстояния от начала отсчета перемещения) по времени. Единица ускорения - метр, деленный на секунду в квадрате (м/с 2).

    Траектория - линия в пространстве, вдоль которой движется материальная точка.
    Путь - это длина траектории. Пройденный путь l равен длине дуги траектории, пройденной телом за некоторое время t. Путь – скалярная величина.

    Расстояние определяет положение точки на ее траектории и отсчитывается от некоторого начала отсчета. Расстояние является алгебраической величиной, так как в зависимости от положения точки относительно начала отсчета и от принятого направления оси расстояний оно может быть и положительным, и отрицательным. В отличие от расстояния путь, пройденный точкой, всегда определяется положительным числом. Путь совпадает с абсолютным значением расстояния только в том случае, когда движение точки начинается от начала отсчета и совершается по траектории в одном направлении.

    В общем случае движения точки путь равен сумме абсолютных значений пройденных точкой расстояний за данный промежуток времени:

    3. Какими способами может быть задан закон движения точки?

    1.Естественный способ задания движения точки.

    При естественном способе задания движения предполагается определение параметров движения точки в подвижной системе отсчета, начало которой совпадает с движущейся точкой, а осями служат касательная, нормаль и бинормаль к траектории движения точки в каждом ее положении. Чтобы задать закон движения точки естественным способом необходимо:

    1) знать траекторию движения;

    2) установить начало отсчета на этой кривой;

    3) установить положительное направление движения;

    4) дать закон движения точки по этой кривой, т.е. выразить расстояние от начала отсчета до положения точки на кривой в данный момент времени ∪OM=S(t) .

    2.Векторный способ задания движения точки

    В этом случае положение точки на плоскости или в пространстве определяется вектором-функцией. Этот вектор откладывается от неподвижной точки, выбранной за начало отсчета, его конец определяет положение движущейся точки.

    3.Координатный способ задания движения точки

    В выбранной системе координат задаются координаты движущейся точки как функции от времени. В прямоугольной декартовой системе координат это будут уравнения:

    4. Как направлен вектор истинной скорости точки при криволинейном движе­нии?

    При неравномерном движении точки модуль ее скорости с течением времени меняется.
    Представим себе точку, движение которой задано естественным способом уравнением s = f(t).

    Если за небольшой промежуток времени Δt точка прошла путь Δs, то ее средняя скорость равна:

    vср = Δs/Δt.

    Средняя скорость не дает представления об истинной скорости в каждый данный момент времени (истинную скорость иначе называют мгновенной). Очевидно, что чем меньше промежуток времени, за который определяется средняя скорость, тем ближе ее значение будет к мгновенной скорости.

    Истинная (мгновенная) скорость есть предел, к которому стремится средняя скорость при Δt, стремящемся к нулю:

    v = lim v ср при t→0 или v = lim (Δs/Δt) = ds/dt.

    Таким образом, числовое значение истинной скорости равно v = ds/dt.
    Истинная (мгновенная) скорость при любом движении точки равна первой производной координаты (т. е. расстояния от начала отсчета перемещения) по времени.

    При Δt стремящемся к нулю, Δs тоже стремится к нулю, и, как мы уже выяснили, вектор скорости будет направлен по касательной (т. е. совпадает с вектором истинной скорости v). Из этого следует, что предел вектора условной скорости v п, равный пределу отношения вектора перемещения точки к бесконечно малому промежутку времени, равен вектору истинной скорости точки.

    5. Как направлены касательное и нормальное ускорения точки?

    Направление вектора ускорения совпадает с направлением изменения скорости Δ = - 0

    Касательное ускорение в данной точке направлено по касательной к траектории движения точки; если движение ускоренное, то направление вектора касательного ускорения совпадает с направлением вектора скорости; если движение замедленное – то направление вектора касательного ускорения противоположно направлению вектора скорости.

    6. Какое движение совершает точка, если касательное ускорение равно нулю, а нормальное не изменяется с течением времени?

    Равномерное криволинейное движение характеризуется тем, что численное значение скорости постоянно (v = const ), скорость меняется лишь по направлению. В этом случае касательное ускорение равно нулю, так как v = const (рис.б),

    а нормальное ускорение не равно нулю, так как r - конечная величина.

    7. Как выглядят кинематические графики при равномерном и равнопеременном движении?

    При равномерном движении тело за любые равные промежутки времени проходит равные пути. Для кинематического описания равномерного прямолинейного движения координатную ось OX удобно расположить по линии движения. Положение тела при равномерном движении определяется заданием одной координаты x . Вектор перемещения и вектор скорости всегда направлены параллельно координатной оси OX . Поэтому перемещение и скорость при прямолинейном движении можно спроецировать на ось OX и рассматривать их проекции как алгебраические величины.

    При равномерном движении путь изменяется, согласно линейной зависимости . В координатах . Графиком является наклонная линия.


    В результате изучения темы студент должен:

    иметь представление о пространстве, времени, траектории; средней и истиной скорости;

    знать способы задания движения точки; параметры движения точки по заданной траектории.

    Центром тяжести твердого тела называется геометрическая точка, жестко связанная с этим телом, и являющаяся центром параллельных сил тяжести, приложенных к отдельным элементарным частицам тела (рисунок 1.6).

    Радиус-вектор этой точки

    Рисунок 1.6

    Для однородного тела положение центра тяжести тела не зависит от материала, а определяется геометрической формой тела.

    Если удельный вес однородного тела γ , вес элементарной частицы тела

    P k = γΔV k (P = γV ) подставить в формулу для определения r C , имеем

    Откуда, проецируя на оси и переходя к пределу, получаем координаты центра тяжести однородного объема

    Аналогично для координат центра тяжести однородной поверхности площадью S (рисунок 1.7, а)

    Рисунок 1.7

    Для координат центра тяжести однородной линии длиной L (рисунок 1.7, б)

    Способы определения координат центра тяжести

    Исходя из полученных ранее общих формул, можно указать способы определения координат центров тяжести твердых тел:

    1 Аналитический (путем интегрирования).

    2 Метод симметрии . Если тело имеет плоскость, ось или центр симметрии, то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.

    3 Экспериментальный (метод подвешивания тела).

    4 Разбиение . Тело разбивается на конечное число частей, для каждой из которых положение центра тяжести C и площадь S известны. Например, проекцию тела на плоскость xOy (рисунок 1.8) можно представить в виде двух плоских фигур с площадями S 1 и S 2 (S = S 1 + S 2 ). Центры тяжести этих фигур находятся в точках C 1 (x 1 , y 1 ) и C 2 (x 2 , y 2 ) . Тогда координаты центра тяжести тела равны

    Рисунок 1.8

    5Дополнение (метод отрицательных площадей или объемов). Частный случай способа разбиения. Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны. Например, необходимо найти координаты центра тяжести плоской фигуры (рисунок 1.9):

    Рисунок 1.9

    Центры тяжести простейших фигур

    Рисунок 1.10

    1 Треугольник

    Центр тяжести площади треугольник совпадает с точкой пересечения его медиан (рисунок 1.10, а).

    DM = MB , CM = (1/3)AM .

    2 Дуга окружности

    Дуга имеет ось симметрии (рисунок 1.10, б). Центр тяжести лежит на этой оси, т.е. y C = 0 .

    dl – элемент дуги, dl = Rdφ , R – радиус окружности, x = Rcosφ , L = 2αR ,

    Следовательно:

    x C = R(sinα/α) .

    3 Круговой сектор

    Сектор радиуса R с центральным углом 2α имеет ось симметрии Ox , на которой находится центр тяжести (рисунок 1.10, в).

    Разбиваем сектор на элементарные секторы, которые можно считать треугольниками. Центры тяжести элементарных секторов располагаются на дуге окружности радиуса (2/3)R .

    Центр тяжести сектора совпадает с центром тяжести дуги AB :

    14. Способы задания движения точки.

    При векторном способе задания движения положение точки определяется радиус-вектором, проведенным из неподвижной точки в выбранной системе отсчета.

    При координатном способе задания движения задаются координаты точки как функции времени:

    Это параметрические уравнения траектории движущейся точки, в которых роль параметра играет время t . Чтобы записать ее уравнение в явной форме, надо исключить из них t .

    При естественном способе задания движения задаются траектория точки, начало отсчета на траектории с указанием положительного направления отсчета, закон изменения дуговой координаты: s=s(t) . Этим способом удобно пользоваться, если траектория точки заранее известна.

    15. 1.2 Скорость точки

    Рассмотрим перемещение точки за малый промежуток времени Δt :

    средняя скорость точки за промежуток времени Dt . Скорость точки в данный момент времени

    Скорость точки – это кинематическая мера ее движения, равная производной по времени от радиус-вектора этой точки в рассматриваемой системе отсчета. Вектор скорости направлен по касательной к траектории точки в сторону движения.

    Исходя из полученных выше общих формул, можно указать конкретные способы определения координат центров тяжести тел.

    1. Симметрия. Если однородное тело имеет плоскость, ось или центр симметрии (рис.7), то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.

    Рис.7

    2. Разбиение. Тело разбивается на конечное число частей (рис.8), для каждой из которых положение центра тяжести и площадь известны.

    Рис.8

    3.Метод отрицательных площадей. Частный случай способа разбиения (рис.9). Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны. Тело в виде пластинки с вырезом представляют комбинацией сплошной пластинки (без выреза) с площадью S 1 и площади вырезанной части S 2 .

    Рис.9

    4.Метод группировки. Является хорошим дополнением двух последних методов. После разбиения фигуры на составные элементы часть их бывает удобно объединить вновь, чтобы затем упростить решение путем учета симметрии этой группы.

    Центры тяжести некоторых одно­родных тел.

    1) Центр тяжести дуги окруж­ности. Рассмотрим дугу АВ радиуса R с центральным углом . В силу сим­метрии центр тяжести этой дуги лежит на оси Ox (рис. 10).

    Рис.10

    Найдем координату по формуле . Для этого выделим на дуге АВ элемент ММ’ длиною , положение которого определяется углом . Координата х элемента ММ’ будет . Подставляя эти значения х и dl и имея в виду, что интеграл должен быть распространен на всю длину дуги, получим:

    где L - длина дуги АВ , равная .

    Отсюда окончательно нахо­дим, что центр тяжести дуги окружности лежит на ее оси симметрии на расстоянии от центра О , равном

    где угол измеряется в радианах.

    2) Центр тяжести площади тре­угольника. Рассмотрим треугольник, лежащий в плоскости Oxy , координаты вершин которого известны: A i (x i ,y i ), (i = 1,2,3). Разбивая треугольник на узкие полоски, параллельные стороне А 1 А 2 , придем к выводу, что центр тяжести треугольника должен принадлежать медиане А 3 М 3 (рис.11) .

    Рис.11

    Разбивая треугольник на полоски, параллельные стороне А 2 А 3 , можно убедиться, что он должен лежать на медиане А 1 М 1 . Таким образом, центр тяжести треугольника лежит в точке пересечения его медиан , которая, как известно, отделяет от каждой медианы третью часть, считая от соответствующей стороны.

    В частности, для медианы А 1 М 1 получим, учитывая, что координаты точки М 1 - это среднее арифметическое координат вершин А 2 и А 3:

    x c = x 1 + (2/3)∙(x М 1 - x 1) = x 1 + (2/3)∙[(x 2 + x 3)/2-x 1 ] = (x 1 + x 2 +x 3)/3.


    Таким образом, координаты центра тяжести треугольника представляют собой среднее арифметическое из координат его вершин:

    x c =(1/3)Σx i ; y c =(1/3)Σy i .

    3) Центр тяжести площади кругового сектора. Рассмотрим сектор круга радиуса R с центральным углом 2α, расположенный симметрично относительно оси Ox (рис.12) .

    Очевидно, что y c = 0, а расстояние от центра круга, из которого вырезан этот сектор, до его центра тяжести можно определить по формуле:

    Рис.12

    Проще всего этот интеграл вычислить, разбивая область интегрирования на элементарные секторы с углом d φ. С точностью до бесконечно малых первого порядка такой сектор можно заменить треугольником с основанием, равным R ×d φ и высотой R . Площадь такого треугольника dF =(1/2)R 2 ∙d φ, а его центр тяжести находится на расстоянии 2/3R от вершины, поэтому в (5) положим x = (2/3)R ∙cosφ. Подставляя в (5) F = αR 2 , получим:

    С помощью последней формулы вычислим, в частности, расстояние до центра тяжести полукруга .

    Подставляя в (2) α = π/2, получим: x c = (4R )/(3π) ≅ 0,4R .

    Пример 1. Определим центр тяжести однородного тела, изображён­ного на рис. 13.

    Рис.13

    Тело однородное, состоящее из двух частей, имеющих симметричную форму. Координаты центров тяжести их:

    Объёмы их:

    Поэтому координаты центра тяжести тела

    Пример 2. Найдем центр тяжести пластины, согнутой под прямым углом. Размеры – на чертеже (рис.14).

    Рис.14

    Координаты центров тяжести:

    Площади:

    Рис. 6.5.
    Пример 3. У квадратного листа см вырезано квадратное отверстие см (рис.15). Найдем центр тяжести листа.

    Рис.15

    В этой задаче удобнее разделить тело на две части: большой квадрат и квадратное отверстие. Только площадь отверстия надо считать отрицательной. Тогда координаты центра тяжести листа с отверстием:

    координата так как тело имеет ось симметрии (диагональ).

    Пример 4. Проволочная скобка (рис.16) состоит из трёх участков оди­наковой длины l .

    Рис.16

    Координаты центров тяжести участ­ков:

    Поэтому координаты центра тяжести всей скобки:

    Пример 5. Определить положение центра тяжести фермы, все стержни которой имеют одинаковую погонную плотность (рис.17).

    Напомним, что в физике плотность тела ρ и его удельный вес g связаны соотношением: γ= ρg , где g - ускорение свободного падения. Чтобы найти массу такого однородного тела, нужно плотность умножить на его объем.

    Рис.17

    Термин «линейная» или «погонная» плотность означает, что для определения массы стержня фермы нужно погонную плотность умножить на длину этого стержня.

    Для решения задачи можно воспользоваться методом разбиения. Представив заданную ферму в виде суммы 6 отдельных стержней, получим:

    где L i длина i -го стержня фермы, а x i , y i - координаты его центра тяжести.

    Решение этой задачи можно упростить, если сгруппировать 5 последних стержней фермы. Нетрудно видеть, что они образуют фигуру, имеющую центр симметрии, расположенный посредине четвертого стержня, где и находится центр тяжести этой группы стержней.

    Таким образом, заданную ферму можно представить комбинацией всего двух групп стержней.

    Первая группа состоит из первого стержня, для нее L 1 = 4 м, x 1 = 0 м, y 1 = 2 м. Вторая группа стержней состоит из пяти стержней, для нее L 2 = 20 м, x 2 = 3 м, y 2 = 2 м.

    Координаты центра тяжести фермы находим по формуле:

    x c = (L 1 ∙x 1 + L 2 ∙x 2)/(L 1 + L 2) = (4∙0 + 20∙3)/24 = 5/2 м;

    y c = (L 1 ∙y 1 + L 2 ∙y 2)/(L 1 + L 2) = (4∙2 + 20∙2)/24 = 2 м.

    Отметим, что центр С лежит на прямой, соединяющей С 1 и С 2 и делит отрезок С 1 С 2 в отношении: С 1 С /СС 2 = (x c - x 1)/(x 2 - x c ) = L 2 / L 1 = 2,5/0,5.

    Вопросы для самопроверки

    Что называется центром параллельных сил?

    Как определяются координаты центра параллельных сил?

    Как определить центр параллельных сил, равнодействующая которых равна нулю?

    Каким свойством обладает центр параллельных сил?

    По каким формулам вычисляются координаты центра параллельных сил?

    Что называется центром тяжести тела?

    Почему силы притяжения Земле, действующие на точку тела, можно принять за систему параллельных сил?

    Запишите формулу для определения положения центра тяжести неоднородных и однородных тел, формулу для определения положения центра тяжести плоских сечений?

    Запишите формулу для определения положения центра тяжести простых геометрических фигур: прямоугольника, треугольника, трапеции и половины круга?

    Что называют статическим моментом площади?

    Приведите пример тела, центр тяжести которого расположен вне тела.

    Как используются свойства симметрии при определении центров тяжести тел?

    В чем состоит сущность способа отрицательных весов?

    Где расположен центр тяжести дуги окружности?

    Каким графическим построением можно найти центр тяжести треугольника?

    Запишите формулу, определяющую центр тяжести кругового сектора.

    Используя формулы, определяющие центры тяжести треугольника и кругового сектора, выведите аналогичную формулу для кругового сегмента.

    По каким формулам вычисляются координаты центров тяжести однородных тел, плоских фигур и линий?

    Что называется статическим моментом площади плоской фигуры относительно оси, как он вычисляется и какую размерность имеет?

    Как определить положение центра тяжести площади, если известно положение центров тяжести отдельных ее частей?

    Какими вспомогательными теоремами пользуются при определении положения центра тяжести?