Войти
Русь. История России. Современная Россия
  • Что изучает социальная психология
  • Океан – наше будущее Роль Мирового океана в жизни Земли
  • Ковер из Байё — какие фильмы смотрели в Средние века
  • Библиотека: читающий малыш
  • Всадник без головы: главные герои, краткая характеристика
  • 3 стили речи. Стили текста. Жанры текста в русском языке. §2. Языковые признаки научного стиля речи
  • Как решать примеры с корнями. Что такое квадратный корень? Алгебраический корень: для тех, кто хочет знать больше

    Как решать примеры с корнями. Что такое квадратный корень? Алгебраический корень: для тех, кто хочет знать больше

    Необходимо произвести сложные расчеты, а электронного вычислительного устройства под рукой не оказалось? Воспользуйтесь онлайн программой - калькулятором корней. Она поможет:

    • найти квадратные или кубические корни из заданных чисел;
    • выполнить математическое действие с дробными степенями.
    Число знаков после запятой:

    Как вычислять квадратный корень вручную -методом подбора находить подходящие значения. Рассмотрим, как это делать.

    Что такое квадратный корень

    Корень n степени натурального числа a - число, n степень которого равна a (подкоренное число). Обозначается корень символом √. Его называют радикалом.

    Каждое математическое действие имеет противодействие: сложение→вычитание, умножение→деление, возведение в степень→извлечение корня.

    Квадратным корнем из числа a будет число, квадрат которого равен a . Из этого следует ответ на вопрос, как вычислить корень из числа? Нужно подобрать число, которое во второй степени будет равно значению под корнем.

    Обычно 2 не пишут над знаком корня. Поскольку это самая маленькая степень, а соответственно если нет числа, то подразумевается показатель 2. Решаем: чтобы вычислить корень квадратный из 16, нужно найти число, при возведении которого во вторую степень получиться 16.

    Проводим расчеты вручную

    Вычисления методом разложения на простые множители выполняется двумя способами, в зависимости от того, какое подкоренное число:

    1.Целое, которое можно разложить на квадратные множители и получить точный ответ.

    Квадратные числа - числа, из которых можно извлечь корень без остатка. А множители - числа, которые при перемножении дают исходное число.

    Например:

    25, 36, 49 - квадратные числа, поскольку:


    Получается, что квадратные множители - множители, которые являются квадратными числами.

    Возьмем 784 и извлечем из него корень.

    Раскладываем число на квадратные множители. Число 784 кратно 4, значит первый квадратный множитель - 4 x 4 = 16. Делим 784 на 16 получаем 49 - это тоже квадратное число 7 x 7 = 16.
    Применим правило

    Извлекаем корень из каждого квадратного множителя, умножаем результаты и получаем ответ.

    Ответ.

    2.Неделимое. Его нельзя разложить на квадратные множители.

    Такие примеры встречаются чаще, чем с целыми числами. Их решение не будет точным, другими словами целым. Оно будет дробным и приблизительным. Упростить задачу поможет разложение подкоренного числа на квадратный множитель и число, из которого извлечь квадратный корень нельзя.

    Раскладываем число 252 на квадратный и обычный множитель.
    Оцениваем значение корня. Для этого подбираем два квадратных числа, которые стоят впереди и сзади подкоренного числа в цифровой линейки. Подкоренное число - 7. Значит ближайшее большее квадратное число будет 8, а меньшее 4.

    между 2 и 4.

    Оцениваем значение Вероятнее √7 ближе к 2. Подбираем таким образом, чтобы при умножении этого числа на само себя получилось 7.

    2,7 x 2,7 = 7,2. Не подходит, так как 7,2>7, берем меньшее 2,6 x 2,6 = 6,76. Оставляем, ведь 6,76~7.

    Вычисляем корень

    Как вычислить корень из сложного числа? Тоже методом оценивая значения корня.

    При делении в столбик получается максимально точный ответ при извлечении корня.

    Возьмите лист бумаги и расчертите его так, чтобы вертикальная линия находилась посередине, а горизонтальная была с ее правой стороны и ниже начала.
    Разбейте подкоренное число на пары чисел. Десятичные дроби делят так:

    — целую часть справа налево;

    — число после запятой слева направо.

    Пример: 3459842,825694 → 3 45 98 42, 82 56 94

    795,28 → 7 95, 28

    Допускается, что вначале остается непарное число.

    Для первого числа (или пары) подбираем наибольшее число n. Его квадрат должен быть меньше или равен значению первого числа (пары чисел).

    Извлеките из этого числа корень - √n. Запишите полученный результат сверху справа, а квадрат этого числа - снизу справа.

    У нас первая 7. Ближайшее квадратное число - 4. Оно меньше 7, а 4 =

    Вычтите найденный квадрат числа n из первого числа (пары). Результат запишите под 7.

    А верхнее число справа удвойте и запишите справа выражение 4_х_=_.

    Примечание: числа должны быть одинаковыми.

    Подбираем число для выражения с прочерками. Для этого найдите такое число, чтобы полученное произведение не было больше или равнялось текущему числу слева. В нашем случае это 8.
    Запишите найденное число в верхнем правом углу. Это второе число из искомого корня.

    Снесите следующую пару чисел и запишите возле полученной разницы слева.

    Вычтите полученное справа произведение из числа слева.

    Удваиваем число, которое расположено справа вверху и записываем выражение с прочерками.

    Сносим к получившейся разнице еще пару чисел. Если это числа дробной части, то есть расположены за запятой, то и в верхнем правом углу возле последней цифры искомого квадратного корня ставим запятую.

    Заполняем прочерки в выражении справа, подбирая число так, чтобы полученное произведение было меньше или равно разницы выражения слева.

    Если необходимо большее количества знаков после запятой, то дописывайте возле текущей цифры слева и повторяйте действия: вычитание слева, удваиваем число в верхнем правом углу, записываем выражение прочерками, подбираем множители для него и так далее.

    Как думаете сколько времени вы потратите на такие расчеты? Сложно, долго, запутанно. Тогда почему бы не упростить себе задачу? Воспользуйтесь нашей программой, которая поможет произвести быстрые и точные расчеты.

    Алгоритм действий

    1. Введите желаемое количество знаков после запятой.

    2. Укажите степень корня (если он больше 2).

    3. Введите число, из которого планируете извлечь корень.

    4. Нажмите кнопку «Решить».

    Вычисление самых сложных математических действий с онлайн калькулятором станет простым!.

    \(\sqrt{a}=b\), если \(b^2=a\), где \(a≥0,b≥0\)


    Примеры:

    \(\sqrt{49}=7\), так как \(7^2=49\)
    \(\sqrt{0,04}=0,2\),так как \(0,2^2=0,04\)

    Как извлечь квадратный корень из числа?

    Чтобы извлечь квадратный корень из числа, надо задать себе вопрос: какое число в квадрате даст выражение под корнем?

    Например . Извлеките корень: а)\(\sqrt{2500}\); б) \(\sqrt{\frac{4}{9}}\); в) \(\sqrt{0,001}\); г) \(\sqrt{1\frac{13}{36}}\)

    а) Какое число в квадрате даст \(2500\)?

    \(\sqrt{2500}=50\)

    б) Какое число в квадрате даст \(\frac{4}{9}\) ?

    \(\sqrt{\frac{4}{9}}\) \(=\)\(\frac{2}{3}\)

    в) Какое число в квадрате, даст \(0,0001\)?

    \(\sqrt{0,0001}=0,01\)

    г) Какое число в квадрате даст \(\sqrt{1\frac{13}{36}}\)? Чтобы дать ответ на вопрос, нужно перевести в неправильную.

    \(\sqrt{1\frac{13}{36}}=\sqrt{\frac{49}{16}}=\frac{7}{6}\)

    Замечание : Хотя \(-50\), \(-\frac{2}{3}\) , \(-0,01\),\(- \frac{7}{6}\) , тоже отвечают на поставленные вопросы, но их не учитывают, так как квадратный корень – всегда положителен.

    Главное свойство корня

    Как известно, в математике у любого действия есть обратное. У сложения – вычитание, у умножения – деление. Обратное действие возведению в квадрат - извлечение квадратного корня. Поэтому эти действия компенсируют друг друга:

    \((\sqrt{a})^2=a\)

    Это и есть главное свойства корня, которое чаще всего используется (в том числе и в ОГЭ)

    Пример . (задание из ОГЭ). Найдите значение выражения \(\frac{(2\sqrt{6})^2}{36}\)

    Решение : \(\frac{(2\sqrt{6})^2}{36}=\frac{4 \cdot (\sqrt{6})^2}{36}=\frac{4 \cdot 6}{36}=\frac{4}{6}=\frac{2}{3}\)

    Пример . (задание из ОГЭ). Найдите значение выражения \((\sqrt{85}-1)^2\)

    Решение:

    Ответ: \(86-2\sqrt{85}\)

    Конечно, при работе с квадратным корнем нужно использовать и другие .

    Пример . (задание из ОГЭ). Найдите значение выражения \(5\sqrt{11} \cdot 2\sqrt{2}\cdot \sqrt{22}\)
    Решение:

    Ответ: \(220\)

    4 правила про которые всегда забывают

    Корень не всегда извлекается


    Пример : \(\sqrt{2}\),\(\sqrt{53}\),\(\sqrt{200}\),\(\sqrt{0,1}\) и т.д. – извлечь корень из числа не всегда возможно и это нормально!


    Корень из числа, тоже число

    Не надо относится к \(\sqrt{2}\), \(\sqrt{53}\), как-то особенно. Это числа, да не целые, да , но не все в нашем мире измеряется в целых числах.


    Корень извлекается только из неотрицательных чисел

    Поэтому в учебниках вы не увидите вот таких записей \(\sqrt{-23}\),\(\sqrt{-1}\),и т.п.

    Довольно часто при решении задач мы сталкиваемся с большими числами, из которых надо извлечь квадратный корень . Многие ученики решают, что это ошибка, и начинают перерешивать весь пример. Ни в коем случае нельзя так поступать! На то есть две причины:

    1. Корни из больших чисел действительно встречаются в задачах. Особенно в текстовых;
    2. Существует алгоритм, с помощью которого эти корни считаются почти устно.

    Этот алгоритм мы сегодня и рассмотрим. Возможно, какие-то вещи покажутся вам непонятными. Но если вы внимательно отнесетесь к этому уроку, то получите мощнейшее оружие против квадратных корней .

    Итак, алгоритм:

    1. Ограничить искомый корень сверху и снизу числами, кратными 10. Таким образом, мы сократим диапазон поиска до 10 чисел;
    2. Из этих 10 чисел отсеять те, которые точно не могут быть корнями. В результате останутся 1—2 числа;
    3. Возвести эти 1—2 числа в квадрат. То из них, квадрат которого равен исходному числу, и будет корнем.

    Прежде чем применять этот алгоритм работает на практике, давайте посмотрим на каждый отдельный шаг.

    Ограничение корней

    В первую очередь надо выяснить, между какими числами расположен наш корень. Очень желательно, чтобы числа были кратны десяти:

    10 2 = 100;
    20 2 = 400;
    30 2 = 900;
    40 2 = 1600;
    ...
    90 2 = 8100;
    100 2 = 10 000.

    Получим ряд чисел:

    100; 400; 900; 1600; 2500; 3600; 4900; 6400; 8100; 10 000.

    Что нам дают эти числа? Все просто: мы получаем границы. Возьмем, например, число 1296. Оно лежит между 900 и 1600. Следовательно, его корень не может быть меньше 30 и больше 40:

    [Подпись к рисунку]

    То же самое — с любым другим числом, из которого можно найти квадратный корень. Например, 3364:

    [Подпись к рисунку]

    Таким образом, вместо непонятного числа мы получаем вполне конкретный диапазон, в котором лежит исходный корень. Чтобы еще больше сузить область поиска, переходим ко второму шагу.

    Отсев заведомо лишних чисел

    Итак, у нас есть 10 чисел — кандидатов на корень. Мы получили их очень быстро, без сложных размышлений и умножений в столбик. Пора двигаться дальше.

    Не поверите, но сейчас мы сократим количество чисел-кандидатов до двух — и снова без каких-либо сложных вычислений! Достаточно знать специальное правило. Вот оно:

    Последняя цифра квадрата зависит только от последней цифры исходного числа .

    Другими словами, достаточно взглянуть на последнюю цифру квадрата — и мы сразу поймем, на что заканчивается исходное число.

    Существует всего 10 цифр, которые могут стоять на последнем месте. Попробуем выяснить, во что они превращаются при возведении в квадрат. Взгляните на таблицу:

    1 2 3 4 5 6 7 8 9 0
    1 4 9 6 5 6 9 4 1 0

    Эта таблица — еще один шаг на пути к вычислению корня. Как видите, цифры во второй строке оказались симметричными относительно пятерки. Например:

    2 2 = 4;
    8 2 = 64 → 4.

    Как видите, последняя цифра в обоих случаях одинакова. А это значит, что, например, корень из 3364 обязательно заканчивается на 2 или на 8. С другой стороны, мы помним ограничение из предыдущего пункта. Получаем:

    [Подпись к рисунку]

    Красные квадраты показывают, что мы пока не знаем этой цифры. Но ведь корень лежит в пределах от 50 до 60, на котором есть только два числа, оканчивающихся на 2 и 8:

    [Подпись к рисунку]

    Вот и все! Из всех возможных корней мы оставили всего два варианта! И это в самом тяжелом случае, ведь последняя цифра может быть 5 или 0. И тогда останется единственный кандидат в корни!

    Финальные вычисления

    Итак, у нас осталось 2 числа-кандидата. Как узнать, какое из них является корнем? Ответ очевиден: возвести оба числа в квадрат. То, которое в квадрате даст исходное число, и будет корнем.

    Например, для числа 3364 мы нашли два числа-кандидата: 52 и 58. Возведем их в квадрат:

    52 2 = (50 +2) 2 = 2500 + 2 · 50 · 2 + 4 = 2704;
    58 2 = (60 − 2) 2 = 3600 − 2 · 60 · 2 + 4 = 3364.

    Вот и все! Получилось, что корень равен 58! При этом, чтобы упростить вычисления, я воспользовался формулой квадратов суммы и разности. Благодаря чему даже не пришлось умножать числа в столбик! Это еще один уровень оптимизации вычислений, но, разумеется, совершенно не обязательный:)

    Примеры вычисления корней

    Теория — это, конечно, хорошо. Но давайте проверим ее на практике.

    [Подпись к рисунку]

    Для начала выясним, между какими числами лежит число 576:

    400 < 576 < 900
    20 2 < 576 < 30 2

    Теперь смотрим на последнюю цифру. Она равна 6. Когда это происходит? Только если корень заканчивается на 4 или 6. Получаем два числа:

    Осталось возвести каждое число в квадрат и сравнить с исходным:

    24 2 = (20 + 4) 2 = 576

    Отлично! Первый же квадрат оказался равен исходному числу. Значит, это и есть корень.

    Задача. Вычислите квадратный корень:

    [Подпись к рисунку]

    900 < 1369 < 1600;
    30 2 < 1369 < 40 2;

    Смотрим на последнюю цифру:

    1369 → 9;
    33; 37.

    Возводим в квадрат:

    33 2 = (30 + 3) 2 = 900 + 2 · 30 · 3 + 9 = 1089 ≠ 1369;
    37 2 = (40 − 3) 2 = 1600 − 2 · 40 · 3 + 9 = 1369.

    Вот и ответ: 37.

    Задача. Вычислите квадратный корень:

    [Подпись к рисунку]

    Ограничиваем число:

    2500 < 2704 < 3600;
    50 2 < 2704 < 60 2;

    Смотрим на последнюю цифру:

    2704 → 4;
    52; 58.

    Возводим в квадрат:

    52 2 = (50 + 2) 2 = 2500 + 2 · 50 · 2 + 4 = 2704;

    Получили ответ: 52. Второе число возводить в квадрат уже не потребуется.

    Задача. Вычислите квадратный корень:

    [Подпись к рисунку]

    Ограничиваем число:

    3600 < 4225 < 4900;
    60 2 < 4225 < 70 2;

    Смотрим на последнюю цифру:

    4225 → 5;
    65.

    Как видим, после второго шага остался лишь один вариант: 65. Это и есть искомый корень. Но давайте все-таки возведем его в квадрат и проверим:

    65 2 = (60 + 5) 2 = 3600 + 2 · 60 · 5 + 25 = 4225;

    Все правильно. Записываем ответ.

    Заключение

    Увы, не лучше. Давайте разберемся в причинах. Их две:

    • На любом нормальном экзамене по математике, будь то ГИА или ЕГЭ, пользоваться калькуляторами запрещено. И за пронесенный в класс калькулятор могут запросто выгнать с экзамена.
    • Не уподобляйтесь тупым американцам. Которые не то что корни — они два простых числа сложить не могут. А при виде дробей у них вообще начинается истерика.

    До появления калькуляторов студенты и преподаватели вычисляли квадратные корни вручную. Существует несколько способов вычисления квадратного корня числа вручную. Некоторые из них предлагают только приблизительное решение, другие дают точный ответ.

    Шаги

    Разложение на простые множители

      Разложите подкоренное число на множители, которые являются квадратными числами. В зависимости от подкоренного числа, вы получите приблизительный или точный ответ. Квадратные числа – числа, из которых можно извлечь целый квадратный корень. Множители – числа, которые при перемножении дают исходное число. Например, множителями числа 8 являются 2 и 4, так как 2 х 4 = 8, числа 25, 36, 49 являются квадратными числами, так как √25 = 5, √36 = 6, √49 = 7. Квадратные множители – это множители, которые являются квадратными числами. Сначала попытайтесь разложить подкоренное число на квадратные множители.

      • Например, вычислите квадратный корень из 400 (вручную). Сначала попытайтесь разложить 400 на квадратные множители. 400 кратно 100, то есть делится на 25 – это квадратное число. Разделив 400 на 25, вы получите 16. Число 16 также является квадратным числом. Таким образом, 400 можно разложить на квадратные множители 25 и 16, то есть 25 х 16 = 400.
      • Записать это можно следующим образом: √400 = √(25 х 16).
    1. Квадратные корень из произведения некоторых членов равен произведению квадратных корней из каждого члена, то есть √(а х b) = √a x √b. Воспользуйтесь этим правилом и извлеките квадратный корень из каждого квадратного множителя и перемножьте полученные результаты, чтобы найти ответ.

      • В нашем примере извлеките корень из 25 и из 16.
        • √(25 х 16)
        • √25 х √16
        • 5 х 4 = 20
    2. Если подкоренное число не раскладывается на два квадратных множителя (а так происходит в большинстве случаев), вы не сможете найти точный ответ в виде целого числа. Но вы можете упростить задачу, разложив подкоренное число на квадратный множитель и обыкновенный множитель (число, из которого целый квадратный корень извлечь нельзя). Затем вы извлечете квадратный корень из квадратного множителя и будете извлекать корень из обыкновенного множителя.

      • Например, вычислите квадратный корень из числа 147. Число 147 нельзя разложить на два квадратных множителя, но его можно разложить на следующие множители: 49 и 3. Решите задачу следующим образом:
        • = √(49 х 3)
        • = √49 х √3
        • = 7√3
    3. Если нужно, оцените значение корня. Теперь можно оценить значение корня (найти приблизительное значение), сравнив его со значениями корней квадратных чисел, находящихся ближе всего (с обеих сторон на числовой прямой) к подкоренному числу. Вы получите значение корня в виде десятичной дроби, которую необходимо умножить на число, стоящее за знаком корня.

      • Вернемся к нашему примеру. Подкоренное число 3. Ближайшими к нему квадратными числами будут числа 1 (√1 = 1) и 4 (√4 = 2). Таким образом, значение √3 расположено между 1 и 2. Та как значение √3, вероятно, ближе к 2, чем к 1, то наша оценка: √3 = 1,7. Умножаем это значение на число у знака корня: 7 х 1,7 = 11,9. Если вы сделаете расчеты на калькуляторе, то получите 12,13, что довольно близко к нашему ответу.
        • Этот метод также работает с большими числами. Например, рассмотрим √35. Подкоренное число 35. Ближайшими к нему квадратными числами будут числа 25 (√25 = 5) и 36 (√36 = 6). Таким образом, значение √35 расположено между 5 и 6. Так как значение √35 намного ближе к 6, чем к 5 (потому что 35 всего на 1 меньше 36), то можно заявить, что √35 немного меньше 6. Проверка на калькуляторе дает нам ответ 5,92 - мы были правы.
    4. Еще один способ – разложите подкоренное число на простые множители . Простые множители – числа, которые делятся только на 1 и самих себя. Запишите простые множители в ряд и найдите пары одинаковых множителей. Такие множители можно вынести за знак корня.

      • Например, вычислите квадратный корень из 45. Раскладываем подкоренное число на простые множители: 45 = 9 х 5, а 9 = 3 х 3. Таким образом, √45 = √(3 х 3 х 5). 3 можно вынести за знак корня: √45 = 3√5. Теперь можно оценить √5.
      • Рассмотрим другой пример: √88.
        • = √(2 х 44)
        • = √ (2 х 4 х 11)
        • = √ (2 х 2 х 2 х 11). Вы получили три множителя 2; возьмите пару из них и вынесите за знак корня.
        • = 2√(2 х 11) = 2√2 х √11. Теперь можно оценить √2 и √11 и найти приблизительный ответ.

      Вычисление квадратного корня вручную

      При помощи деления в столбик

      1. Этот метод включает процесс, аналогичный делению в столбик, и дает точный ответ. Сначала проведите вертикальную линию, делящую лист на две половины, а затем справа и немного ниже верхнего края листа к вертикальной линии пририсуйте горизонтальную линию. Теперь разделите подкоренное число на пары чисел, начиная с дробной части после запятой. Так, число 79520789182,47897 записывается как "7 95 20 78 91 82, 47 89 70".

        • Для примера вычислим квадратный корень числа 780,14. Нарисуйте две линии (как показано на рисунке) и слева сверху напишите данное число в виде "7 80, 14". Это нормально, что первая слева цифра является непарной цифрой. Ответ (корень из данного числа) будете записывать справа сверху.
      2. Для первой слева пары чисел (или одного числа) найдите наибольшее целое число n, квадрат которого меньше или равен рассматриваемой паре чисел (или одного числа). Другими словами, найдите квадратное число, которое расположено ближе всего к первой слева паре чисел (или одному числу), но меньше ее, и извлеките квадратный корень из этого квадратного числа; вы получите число n. Напишите найденное n сверху справа, а квадрат n запишите снизу справа.

        • В нашем случае, первым слева числом будет число 7. Далее, 4 < 7, то есть 2 2 < 7 и n = 2. Напишите 2 сверху справа - это первая цифра в искомом квадратном корне. Напишите 2×2=4 справа снизу; вам понадобится это число для последующих вычислений.
      3. Вычтите квадрат числа n, которое вы только что нашли, из первой слева пары чисел (или одного числа). Результат вычисления запишите под вычитаемым (квадратом числа n).

        • В нашем примере вычтите 4 из 7 и получите 3.
      4. Снесите вторую пару чисел и запишите ее около значения, полученного в предыдущем шаге. Затем удвойте число сверху справа и запишите полученный результат снизу справа с добавлением "_×_=".

        • В нашем примере второй парой чисел является "80". Запишите "80" после 3. Затем, удвоенное число сверху справа дает 4. Запишите "4_×_=" снизу справа.
      5. Заполните прочерки справа.

        • В нашем случае, если вместо прочерков поставить число 8, то 48 х 8 = 384, что больше 380. Поэтому 8 - слишком большое число, а вот 7 подойдет. Напишите 7 вместо прочерков и получите: 47 х 7 = 329. Запишите 7 сверху справа - это вторая цифра в искомом квадратном корне числа 780,14.
      6. Вычтите полученное число из текущего числа слева. Запишите результат из предыдущего шага под текущим числом слева, найдите разницу и запишите ее под вычитаемым.

        • В нашем примере, вычтите 329 из 380, что равно 51.
      7. Повторите шаг 4. Если сносимой парой чисел является дробная часть исходного числа, то поставьте разделитель (запятую) целой и дробной частей в искомом квадратном корне сверху справа. Слева снесите вниз следующую пару чисел. Удвойте число сверху справа и запишите полученный результат снизу справа с добавлением "_×_=".

        • В нашем примере следующей сносимой парой чисел будет дробная часть числа 780.14, поэтому поставьте разделитель целой и дробной частей в искомом квадратном корне сверху справа. Снесите 14 и запишите снизу слева. Удвоенным числом сверху справа (27) будет 54, поэтому напишите "54_×_=" снизу справа.
      8. Повторите шаги 5 и 6. Найдите такое наибольшее число на место прочерков справа (вместо прочерков нужно подставить одно и тоже число), чтобы результат умножения был меньше или равен текущему числу слева.

        • В нашем примере 549 х 9 = 4941, что меньше текущего числа слева (5114). Напишите 9 сверху справа и вычтите результат умножения из текущего числа слева: 5114 - 4941 = 173.
      9. Если для квадратного корня вам необходимо найти больше знаков после запятой, напишите пару нулей у текущего числа слева и повторяйте шаги 4, 5 и 6. Повторяйте шаги, до тех пор пока не получите нужную вам точность ответа (число знаков после запятой).

      Понимание процесса

        Для усвоения данного метода представьте число, квадратный корень которого необходимо найти, как площадь квадрата S. В этом случае вы будете искать длину стороны L такого квадрата. Вычисляем такое значение L, при котором L² = S.

        Задайте букву для каждой цифры в ответе. Обозначим через A первую цифру в значении L (искомый квадратный корень). B будет второй цифрой, C - третьей и так далее.

        Задайте букву для каждой пары первых цифр. Обозначим через S a первую пару цифр в значении S, через S b - вторую пару цифр и так далее.

        Уясните связь данного метода с делением в столбик. Как и в операции деления, где каждый раз нас интересует только одна следующая цифра делимого числа, при вычислении квадратного корня мы последовательно работаем с парой цифр (для получения одной следующей цифры в значении квадратного корня).

      1. Рассмотрим первую пару цифр Sa числа S (Sa = 7 в нашем примере) и найдем ее квадратный корень. В этом случае первой цифрой A искомого значения квадратного корня будет такая цифра, квадрат которой меньше или равен S a (то есть ищем такое A, при котором выполняется неравенство A² ≤ Sa < (A+1)²). В нашем примере, S1 = 7, и 2² ≤ 7 < 3²; таким образом A = 2.

        • Допустим, что нужно разделить 88962 на 7; здесь первый шаг будет аналогичным: рассматриваем первую цифру делимого числа 88962 (8) и подбираем такое наибольшее число, которое при умножении на 7 дает значение меньшее или равное 8. То есть ищем такое число d, при котором верно неравенство: 7×d ≤ 8 < 7×(d+1). В этом случае d будет равно 1.

    Иррациональные выражения и их преобразования

    В прошлый раз мы вспомнили (или узнали – кому как), что же такое , научились извлекать такие корни, разобрали по винтикам основные свойства корней и решали несложные примеры с корнями.

    Этот урок будет продолжением предыдущего и будет посвящён преобразованиям самых разных выражений, содержащих всевозможные корни. Такие выражения называются иррациональными . Здесь появятся и выражения с буквами, и дополнительные условия, и избавление от иррациональности в дробях, и некоторые продвинутые приёмы в работе с корнями. Те приёмы, которые будут рассматриваться в данном уроке, станут хорошей базой для решения задач ЕГЭ (и не только) практически любого уровня сложности. Итак, давайте приступим.

    Прежде всего я продублирую здесь основные формулы и свойства корней. Чтобы не скакать из темы в тему. Вот они:

    при

    Формулы эти надо обязательно знать и уметь применять. Причём в обе стороны – как слева направо, так и справа налево. Именно на них и основывается решение большинства заданий с корнями любой степени сложности. Начнём пока с самого простого – с прямого применения формул или их комбинаций.

    Простое применение формул

    В этой части будут рассматриваться простые и безобидные примеры – без букв, дополнительных условий и прочих хитростей. Однако даже в них, как правило, имеются варианты. И чем навороченнее пример, тем больше таких вариантов. И у неопытного ученика возникает главная проблема – с чего начинать? Ответ здесь простой – не знаешь, что нужно - делай что можно . Лишь бы ваши действия шли в мире и согласии с правилами математики и не противоречили им.) Например, такое задание:

    Вычислить:

    Даже в таком простеньком примере возможны несколько путей к ответу.

    Первый – просто перемножить корни по первому свойству и извлечь корень из результата:

    Второй вариант такой: не трогаем, работаем с . Выносим множитель из-под знака корня, а дальше - по первому свойству. Вот так:

    Решать можно как больше нравится. В любом из вариантов ответ получается один – восьмёрка. Мне, например, проще перемножить 4 и 128 и получить 512, а из этого числа отлично извлекается кубический корень. Если кто-то не помнит, что 512 – это 8 в кубе, то не беда: можно записать 512 как 2 9 (первые 10 степеней двойки, я надеюсь, помните?) и по формуле корня из степени:

    Другой пример.

    Вычислить: .

    Если работать по первому свойству (всё загнать под один корень), то получится здоровенное число, из которого корень потом извлекать – тоже не сахар. Да и не факт, что он извлечётся ровно.) Поэтому здесь полезно в числе вынести множители из-под корня. Причём вынести по максимуму:

    И теперь всё наладилось:

    Осталось восьмёрку и двойку записать под одним корнем (по первому свойству) и – готово дело. :)

    Добавим теперь немного дробей.

    Вычислить:

    Пример совсем примитивный, однако и в нём имеются варианты. Можно с помощью вынесения множителя преобразовать числитель и сократить со знаменателем:

    А можно сразу воспользоваться формулой деления корней:

    Как видим, и так, и сяк – всяко правильно.) Если не споткнуться на полпути и не ошибиться. Хотя где тут ошибаться-то…

    Разберём теперь самый последний пример из домашнего задания прошлого урока:

    Упростить:

    Совершенно немыслимый набор корней, да ещё и вложенных. Как быть? Главное – не бояться! Здесь мы первым делом замечаем под корнями числа 2, 4 и 32 – степени двойки. Первое что нужно сделать – привести все числа к двойкам: всё-таки чем больше одинаковых чисел в примере и меньше разных, тем проще.) Начнём отдельно с первого множителя:

    Число можно упростить, сократив двойку под корнем с четвёркой в показателе корня:

    Теперь, согласно корню из произведения:

    .

    В числе выносим двойку за знак корня:

    А с выражением расправляемся по формуле корня из корня:

    Значит, первый множитель запишется вот так:

    Вложенные корни исчезли, числа стали поменьше, что уже радует. Вот только корни разные, но пока так и оставим. Надо будет – преобразуем к одинаковым. Берёмся за второй множитель.)

    Второй множитель преобразовываем аналогично, по формуле корня из произведения и корня из корня. Где надо – сокращаем показатели по пятой формуле:

    Вставляем всё в исходный пример и получаем:

    Получили произведение целой кучи совершенно разных корней. Неплохо было бы привести их все к одному показателю, а там – видно будет. Что ж, это вполне возможно. Наибольший из показателей корней равен 12, а все остальные – 2, 3, 4, 6 – делители числа 12. Поэтому будем приводить все корни по пятому свойству к одному показателю – к 12:

    Считаем и получаем:

    Красивого числа не получили, ну и ладно. Нас просили упростить выражение, а не посчитать . Упростили? Конечно! А вид ответа (целое число или нет) здесь уже не играет никакой роли.

    Немного сложения / вычитания и формул сокращённого умножения

    К сожалению, общих формул для сложения и вычитания корней в математике нету. Однако, в заданиях сплошь и рядом встречаются эти действия с корнями. Здесь необходимо понимать, что любые корни – это точно такие же математические значки, как и буквы в алгебре.) И к корням применимы те же самые приёмы и правила, что и к буквам – раскрытие скобок, приведение подобных, формулы сокращённого умножения и т.п.

    Например, каждому ясно, что . Точно так же одинаковые корни можно совершенно спокойно между собой складывать/вычитать:

    Если корни разные, то ищем способ сделать их одинаковыми – внесением/вынесением множителя или же по пятому свойству. Если ну никак не упрощается, то, возможно, преобразования более хитрые.

    Смотрим первый пример.

    Найти значение выражения: .

    Все три корня хоть и кубические, но из разных чисел. Чисто не извлекаются и между собой складываются/вычитаются. Стало быть, применение общих формул здесь не катит. Как быть? А вынесем-ка множители в каждом корне. Хуже в любом случае не будет.) Тем более что других вариантов, собственно, и нету:

    Стало быть, .

    Вот и всё решение. Здесь мы от разных корней перешли к одинаковым с помощью вынесения множителя из-под корня . А затем просто привели подобные.) Решаем дальше.

    Найти значение выражения :

    С корнем из семнадцати точно ничего не поделаешь. Работаем по первому свойству – делаем из произведения двух корней один корень:

    А теперь присмотримся повнимательнее. Что у нас под большим кубическим корнем? Разность ква.. Ну, конечно! Разность квадратов:

    Теперь осталось только извлечь корень: .

    Вычислить:

    Здесь придётся проявить математическую смекалку.) Мыслим примерно следующим образом: «Так, в примере произведение корней. Под одним корнем разность, а под другим – сумма. Очень похоже на формулу разности квадратов. Но… Корни – разные! Первый квадратный, а второй – четвёртой степени… Хорошо бы сделать их одинаковыми. По пятому свойству можно легко из квадратного корня сделать корень четвёртой степени. Для этого достаточно подкоренное выражение возвести в квадрат.»

    Если вы мыслили примерно так же, то вы – на полпути к успеху. Совершенно верно! Превратим первый множитель в корень четвёртой степени. Вот так:

    Теперь, ничего не поделать, но придётся вспомнить формулу квадрата разности. Только в применении к корням. Ну и что? Чем корни хуже других чисел или выражений?! Возводим:

    «Хм, ну возвели и что? Хрен редьки не слаще. Стоп! А если вынести четвёрку под корнем? Тогда выплывет то же самое выражение, что и под вторым корнем, только с минусом, а ведь именно этого мы и добиваемся!»

    Верно! Выносим четвёрку:

    .

    А теперь – дело техники:

    Вот так распутываются сложные примеры.) Теперь пора потренироваться с дробями.

    Вычислить:

    Ясно, что надо преобразовывать числитель. Как? По формуле квадрата суммы, разумеется. У нас есть ещё варианты разве? :) Возводим в квадрат, выносим множители, сокращаем показатели (где надо):

    Во как! Получили в точности знаменатель нашей дроби.) Значит, вся дробь, очевидно, равна единице:

    Ещё пример. Только теперь на другую формулу сокращённого умножения.)

    Вычислить:

    Понятно, что квадрат разности надо в дело применять. Выписываем знаменатель отдельно и - поехали!

    Выносим множители из-под корней:

    Следовательно,

    Теперь всё нехорошее великолепно сокращается и получается:

    Что ж, поднимаемся на следующий уровень. :)

    Буквы и дополнительные условия

    Буквенные выражения с корнями – штука более хитрая, чем числовые выражения, и является неиссякаемым источником досадных и очень грубых ошибок. Перекроем этот источник.) Ошибки всплывают из-за того, что частенько таких заданиях фигурируют отрицательные числа и выражения. Они либо даны нам прямо в задании, либо спрятаны в буквах и дополнительных условиях . А нам в процессе работы с корнями постоянно надо помнить, что в корнях чётной степени как под самим корнем, так и в результате извлечения корня должно быть неотрицательное выражение . Ключевой формулой в задачах этого пункта будет четвёртая формула:

    С корнями нечётной степени вопросов никаких – там всегда всё извлекается что с плюсом, что с минусом. И минус, если что, выносится вперёд. Будем сразу разбираться с корнями чётных степеней.) Например, такое коротенькое задание.

    Упростить: , если .

    Казалось бы, всё просто. Получится просто икс.) Но зачем же тогда дополнительное условие ? В таких случаях полезно прикинуть на числах. Чисто для себя.) Если , то икс – заведомо отрицательное число. Минус три, например. Или минус сорок. Пусть . Можно минус три возвести в четвёртую степень? Конечно! Получится 81. Можно из 81 извлечь корень четвёртой степени? А почему нет? Можно! Получится тройка. Теперь проанализируем всю нашу цепочку:

    Что мы видим? На входе было отрицательное число, а на выходе – уже положительное. Было минус три, стало плюс три.) Возвращаемся к буквам. Вне всяких сомнений, по модулю это будет точно икс, но только сам икс у нас с минусом (по условию!), а результат извлечения (в силу арифметического корня!) должен быть с плюсом. Как получить плюс? Очень просто! Для этого достаточно перед заведомо отрицательным числом поставить минус.) И правильное решение выглядит так:

    Кстати сказать, если бы мы воспользовались формулой , то, вспомнив определение модуля, сразу получили бы верный ответ. Поскольку

    |x| = -x при x<0.

    Вынести множитель за знак корня: , где .

    Первый взгляд – на подкоренное выражение. Тут всё ОК. При любом раскладе оно будет неотрицательным. Начинаем извлекать. По формуле корня из произведения, извлекаем корень из каждого множителя:

    Откуда взялись модули, объяснять, думаю, уже не надо.) А теперь анализируем каждый из модулей.

    Множитель | a | так и оставляем без изменений: у нас нету никакого условия на букву a . Мы не знаем, положительное она или отрицательная. Следующий модуль | b 2 | можно смело опустить: в любом случае выражение b 2 неотрицательно. А вот насчёт | c 3 | – тут уже задачка.) Если , то и c 3 <0. Стало быть, модуль надо раскрыть с минусом : | c 3 | = - c 3 . Итого верное решение будет такое:

    А теперь – обратная задача. Не самая простая, сразу предупреждаю!

    Внести множитель под знак корня : .

    Если вы сразу запишете решение вот так

    то вы попали в ловушку . Это неверное решение ! В чём же дело?

    Давайте вглядимся в выражение под корнем . Под корнем четвёртой степени, как мы знаем, должно находиться неотрицательное выражение. Иначе корень смысла не имеет.) Поэтому А это, в свою очередь, значит, что и, следовательно, само также неположительно: .

    И ошибка здесь состоит в том, что мы вносим под корень неположительное число : четвёртая степень превращает его в неотрицательное и получается неверный результат – слева заведомый минус, а справа уже плюс. А вносить под корень чётной степени мы имеем право только неотрицательные числа или выражения. А минус, если есть, оставлять перед корнем.) Как же нам выделить неотрицательный множитель в числе , зная, что оно само стопудово отрицательное? Да точно так же! Поставить минус.) А чтобы ничего не поменялось, скомпенсировать его ещё одним минусом. Вот так:

    И теперь уже неотрицательное число (-b) спокойно вносим под корень по всем правилам:

    Этот пример наглядно показывает, что, в отличие от других разделов математики, в корнях правильный ответ далеко не всегда вытекает автоматически из формул. Необходимо подумать и лично принять верное решение.) Особенно следует быть внимательнее со знаками в иррациональных уравнениях и неравенствах .

    Разбираемся со следующим важным приёмом в работе с корнями – избавлением от иррациональности .

    Избавление от иррациональности в дробях

    Если в выражении присутствуют корни, то, напомню, такое выражение называется выражением с иррациональностью . В некоторых случаях бывает полезно от этой самой иррациональности (т.е. корней) избавиться. Как можно ликвидировать корень? Корень у нас пропадает при… возведении в степень. С показателем либо равным показателю корня, либо кратным ему. Но, если мы возведём корень в степень (т.е. помножим корень сам на себя нужное число раз), то выражение от этого поменяется. Нехорошо.) Однако в математике бывают темы, где умножение вполне себе безболезненно. В дробях, к примеру. Согласно основному свойству дроби, если числитель и знаменатель умножить (разделить) на одно и то же число, то значение дроби не изменится.

    Допустим, нам дана вот такая дробь:

    Можно ли избавиться от корня в знаменателе? Можно! Для этого корень надо возвести в куб. Чего нам не хватает в знаменателе для полного куба? Нам не хватает множителя , т.е. . Вот и домножаем числитель и знаменатель дроби на

    Корень в знаменателе исчез. Но… он появился в числителе. Ничего не поделать, такова судьба.) Нам это уже не важно: нас просили знаменатель от корней освободить. Освободили? Безусловно.)

    Кстати, те, кто уже в ладах с тригонометрией, возможно, обращали внимание на то, что в некоторых учебниках и таблицах, к примеру, обозначают по-разному: где-то , а где-то . Вопрос – что правильно? Ответ: всё правильно!) Если догадаться, что – это просто результат освобождения от иррациональности в знаменателе дроби . :)

    Зачем нам освобождаться от иррациональности в дробях? Какая разница – в числителе корень сидит или в знаменателе? Калькулятор всё равно всё посчитает.) Ну, для тех, кто не расстаётся с калькулятором, разницы действительно практически никакой… Но, даже считая на калькуляторе, можно обратить внимание на то, что делить на целое число всегда удобнее и быстрее, чем на иррациональное . А уж про деление в столбик вообще умолчу.)

    Следующий пример только подтвердит мои слова.

    Как здесь ликвидировать квадратный корень в знаменателе? Если числитель и знаменатель помножить на выражение , то в знаменателе получится квадрат суммы. Сумма квадратов первого и второго чисел дадут нам просто числа безо всяких корней, что очень радует. Однако… всплывёт удвоенное произведение первого числа на второе, где корень из трёх всё равно останется. Не канает. Как быть? Вспомнить другую замечательную формулу сокращённого умножения! Где никаких удвоенных произведений, а только квадраты:

    Такое выражение, которое при домножении какой-то суммы (или разности) выводит на разность квадратов , ещё называют сопряжённым выражением . В нашем примере сопряжённым выражением будет служить разность . Вот и домножаем на эту разность числитель и знаменатель:

    Что тут можно сказать? В результате наших манипуляций не то что корень из знаменателя исчез – вообще дробь исчезла! :) Даже с калькулятором отнять корень из трёх от тройки проще, чем считать дробь с корнем в знаменателе. Ещё пример.

    Освободиться от иррациональности в знаменателе дроби:

    Как здесь выкручиваться? Формулы сокращённого умножения с квадратами сразу не катят – не получится полной ликвидации корней из-за того, что корень у нас в этот раз не квадратный, а кубический . Надо, чтобы корень как-то возвёлся в куб. Стало быть, применять надо какую-то из формул с кубами. Какую? Давайте подумаем. В знаменателе – сумма . Как нам добиться возведения корня в куб? Домножить на неполный квадрат разности ! Значит, применять будем формулу суммы кубов . Вот эту:

    В качестве a у нас тройка, а в качестве b – корень кубический из пяти:

    И снова дробь исчезла.) Такие ситуации, когда при освобождении от иррациональности в знаменателе дроби у нас вместе с корнями полностью исчезает сама дробь, встречаются очень часто. Как вам вот такой примерчик!

    Вычислить:

    Попробуйте просто сложить эти три дроби! Без ошибок! :) Один общий знаменатель чего стоит. А что, если попробовать освободиться от иррациональности в знаменателе каждой дроби? Что ж, пробуем:

    Ух ты, как интересно! Все дроби пропали! Напрочь. И теперь пример решается в два счёта:

    Просто и элегантно. И без долгих и утомительных вычислений. :)

    Именно поэтому операцию освобождения от иррациональности в дробях надо уметь делать. В подобных навороченных примерах только она и спасает, да.) Разумеется, внимательность никто не отменял. Бывают задания, где просят избавиться от иррациональности в числителе . Эти задания ничем от рассмотренных не отличаются, только от корней очищается числитель.)

    Более сложные примеры

    Осталось рассмотреть некоторые специальные приёмы в работе с корнями и потренироваться распутывать не самые простые примеры. И тогда полученной информации уже будет достаточно для решения заданий с корнями любого уровня сложности. Итак – вперёд.) Для начала разберёмся, что делать со вложенными корнями, когда формула корня из корня не работает. Например, вот такой примерчик.

    Вычислить:

    Корень под корнем… К тому же под корнями сумма или разность. Стало быть, формула корня из корня (с перемножением показателей) здесь не действует . Значит, надо что-то делать с подкоренными выражениями : у нас просто нету других вариантов. В таких примерах чаще всего под большим корнем зашифрован полный квадрат какой-нибудь суммы. Или разности. А корень из квадрата уже отлично извлекается! И теперь наша задача – его расшифровать.) Такая расшифровка красиво делается через систему уравнений . Сейчас всё сами увидите.)

    Итак, под первым корнем у нас вот такое выражение:

    А вдруг, не угадали? Проверим! Возводим в квадрат по формуле квадрата суммы:

    Всё верно.) Но… Откуда я взял это выражение ? С неба?

    Нет.) Мы его чуть ниже получим честно. Просто по данному выражению я показываю, как именно составители заданий шифруют такие квадраты. :) Что такое 54? Это сумма квадратов первого и второго чисел . Причём, обратите внимание, уже без корней! А корень остаётся в удвоенном произведении , которое в нашем случае равно . Поэтому распутывание подобных примеров начинается с поиска удвоенного произведения. Если распутывать обычным подбором. И, кстати, о знаках. Тут всё просто. Если перед удвоенным плюс, то квадрат суммы. Если минус, то разности.) У нас плюс – значит, квадрат суммы.) А теперь – обещанный аналитический способ расшифровки. Через систему.)

    Итак, у нас под корнем явно тусуется выражение (a+b) 2 , и наша задача – найти a и b . В нашем случае сумма квадратов даёт 54. Вот и пишем:

    Теперь удвоенное произведение. Оно у нас . Так и записываем:

    Получили вот такую системку:

    Решаем обычным методом подстановки. Выражаем из второго уравнения, например, и подставляем в первое:

    Решим первое уравнение:

    Получили биквадратное уравнение относительно a . Считаем дискриминант:

    Значит,

    Получили аж четыре возможных значения a . Не пугаемся. Сейчас мы всё лишнее отсеем.) Если мы сейчас для каждого из четырёх найденных значений посчитаем соответствующие значения, то получим четыре решения нашей системы. Вот они:

    И тут вопрос – а какое из решений нам подходит? Давайте подумаем. Отрицательные решения можно сразу отбросить: при возведении в квадрат минусы «сгорят», и всё подкоренное выражение в целом не изменится.) Остаются первые два варианта. Выбрать их можно совершенно произвольно: от перестановки слагаемых сумма всё равно не меняется.) Пусть, например, , а .

    Итого получили под корнем квадрат вот такой суммы:

    Всё чётко.)

    Я не зря так детально описываю ход решения. Чтобы было понятно, как происходит расшифровка.) Но есть одна проблемка. Аналитический способ расшифровки хоть и надёжный, но весьма длинный и громоздкий: приходится решать биквадратное уравнение, получать четыре решения системы и потом ещё думать, какие из них выбрать… Хлопотно? Согласен, хлопотно. Этот способ безотказно работает в большинстве подобных примеров. Однако очень часто можно здорово сократить себе работу и найти оба числа творчески. Подбором.) Да-да! Сейчас, на примере второго слагаемого (второго корня), я покажу более лёгкий и быстрый способ выделения полного квадрата под корнем.

    Итак, теперь у нас вот такой корень: .

    Размышляем так: «Под корнем – скорее всего, зашифрованный полный квадрат. Раз перед удвоенным минус – значит, квадрат разности. Сумма квадратов первого и второго чисел даёт нам число 54. Но какие это квадраты? 1 и 53? 49 и 5? Слишком много вариантов… Нет, лучше начать распутывать с удвоенного произведения. Наши можно расписать как . Раз произведение удвоенное , то двойку сразу отметаем. Тогда кандидатами на роль a и b остаются 7 и . А вдруг, это 14 и /2 ? Не исключено. Но начинаем-то всегда с простого!» Итак, пусть , а . Проверим их на сумму квадратов:

    Получилось! Значит, наше подкоренное выражение – это на самом деле квадрат разности:

    Вот такой вот способ-лайт, чтобы не связываться с системой. Не всегда работает, но во многих таких примерах его вполне достаточно. Итак, под корнями – полные квадраты. Осталось только правильно извлечь корни, да досчитать пример:

    А теперь разберём ещё более нестандартное задание на корни.)

    Докажите, что число A – целое, если .

    Впрямую ничего не извлекается, корни вложенные, да ещё и разных степеней… Кошмар! Однако, задание имеет смысл.) Стало быть, ключ к его решению имеется.) А ключ здесь такой. Рассмотрим наше равенство

    как уравнение относительно A . Да-да! Хорошо бы избавиться от корней. Корни у нас кубические, поэтому возведём-ка обе части равенства в куб. По формуле куба суммы :

    Кубы и корни кубические друг друга компенсируют, а под каждым большим корнем забираем одну скобку у квадрата и сворачиваем произведение разности и суммы в разность квадратов:

    Отдельно сосчитаем разность квадратов под корнями: