Войти
Русь. История России. Современная Россия
  • Что изучает социальная психология
  • Океан – наше будущее Роль Мирового океана в жизни Земли
  • Ковер из Байё — какие фильмы смотрели в Средние века
  • Библиотека: читающий малыш
  • Всадник без головы: главные герои, краткая характеристика
  • 3 стили речи. Стили текста. Жанры текста в русском языке. §2. Языковые признаки научного стиля речи
  • Виды алканов и их формулы. Предельные углеводороды. Алканы. В) полное термическое разложение

    Виды алканов и их формулы. Предельные углеводороды. Алканы. В) полное
 термическое разложение

    Строение алканов

    Алканы - углеводороды, в молекулах которых атомы связаны одинарными связями и которые соответствуют общей формуле C n H 2n+2 . В молекулах алканов все атомы углерода находятся в состоянии sр 3 -гибридизации .

    Это означает, что все четыре гибридные орбитали атома углерода одинаковы по форме, энергии и направлены в углы равносторон­ней треугольной пирамиды - тетраэдра . Углы между орбиталями равны 109° 28′. Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение, и молекулы алканов могут приобретать самую разнообразную форму с углами при атомах углерода, близкими к тетраэдрическому (109° 28′), напри­мер, в молекуле н-пентан.

    Особо стоит напомнить о связях в молекулах ал­канов. Все связи в молекулах предельных углеводо­родов одинарные. Перекрывание происходит по оси, соединяющей ядра атомов, т. е. это σ-связи . Связи углерод - углерод являются неполярными и плохо поляризуемыми. Длина С-С связи в алканах равна 0,154 нм (1,54 10 10 м). Связи С-Н несколько коро­че. Электронная плотность немного смещена в сто­рону более электроотрицательного атома углерода, т. е. связь С-Н является слабополярной .

    Гомологический ряд метана

    Гомологи - вещества, сходные по строению и свойствам и отличающиеся на одну или более групп СН 2 .

    Предельные углеводороды составляют гомоло­гический ряд метана.

    Изомерия и номенклатура алканов

    Для алканов характерна так называемая струк­турная изомерия . Структурные изомеры отлича­ются друг от друга строением углеродного скеле­та. Простейший алкан, для которого характерны структурные изомеры, - это бутан.

    Рассмотрим подробнее для алканов основы но­менклатуры ИЮПАК .

    1. Выбор главной цепи . Формирование названия углеводорода начинается с определения главной цепи - самой длинной цепочки атомов углерода в молекуле, которая является как бы ее основой.

    2. Нумерация атомов главной цепи . Атомам главной цепи присваивают номера. Нумерация атомов главной цепи начинается с того конца, к которому ближе стоит заместитель (структуры А, Б). Если заместители находятся на равном уда­лении от конца цепи, то нумерация начинается от того конца, при котором их больше (структу­ра В). Если различные заместители находятся на равном удалении от концов цепи, то нумерация начинается с того конца, к которому ближе стар­ший (структура Г). Старшинство углеводородных заместителей определяется по тому, в каком порядке следует в алфавите буква, с которой начи­нается их название: метил (-СН 3), затем пропил (-СН 2 -СН 2 -СН 3), этил (-СН 2 -СН 3) и т. д.

    Обратите внимание на то, что название заме­стителя формируется заменой суффикса -ан на суффикс -ил в названии соответствующего алкана.

    3. Формирование названия . В начале названия указывают цифры - номера атомов углерода, при которых находятся заместители. Если при данном атоме находятся несколько заместителей, то соот­ветствующий номер в названии повторяется дваж­ды через запятую (2,2-). После номера через дефис указывают количество заместителей (ди - два, три - три, тетра - четыре, пента - пять) и на­звание заместителя (метил, этил, пропил). Затем без пробелов и дефисов - название главной цепи. Главная цепь называется как углеводород - член гомологического ряда метана (метан, этан, пропан и т. д.).

    Названия веществ, структурные формулы кото­рых приведены выше, следующие:

    Структура А: 2-метилпропан;

    Структура Б: 3-этилгексан;

    Структура В: 2,2,4-триметилпентан;

    Структура Г: 2-метил 4-этилгексан.

    Отсутствие в молекулах предельных углеводоро­дов полярных связей приводит к тому, что они плохо растворяются в воде , не вступают во взаимодействие с заряженными частицами (ионами) . Наиболее ха­рактерными для алканов являются реакции, проте­кающие с участием свободных радикалов .

    Физические свойства алканов

    Первые четыре представителя гомологического ряда метана - газы . Простейший из них - ме­тан - газ без цвета, вкуса и запаха (запах «газа», почувствовав который, надо звонить 04, опреде­ляется запахом меркаптанов - серосодержащих соединений, специально добавляемых к метану, используемому в бытовых и промышленных га­зовых приборах для того, чтобы люди, находя­щиеся рядом с ними, могли по запаху определить утечку).

    Углеводороды состава от С 5 Н 12 до С 15 Н 32 - жидкости; более тяжелые углеводороды - твердые ве­щества. Температуры кипения и плавления алканов постепенно увеличиваются с возрастанием длины углеродной цепи. Все углеводороды плохо растворяются в воде, жидкие углеводороды являются рас­пространенными органическими растворителями.

    Химические свойства алканов

    Реакции замещения.

    Наиболее характерными для алканов являются реакции свободнорадикаль­ного замещения , в ходе которого атом водорода за­мещается на атом галогена или какую-либо группу.

    Приведем уравнения характерных реакций галогенирования :

    В случае избытка галогена хлорирование может пойти дальше, вплоть до полного замещения всех атомов водорода на хлор :

    Полученные вещества широко используются как растворители и исходные вещества в органи­ческих синтезах.

    Реакция дегидрирования (отщепления водоро­да).

    В ходе пропускания алканов над катализато­ром (Pt, Ni, Al 2 O 3 , Cr 2 O 3) при высокой температуре (400-600 °C) происходит отщепление молекулы во­дорода и образование алкена :

    Реакции, сопровождающиеся разрушением углеродной цепи. Все предельные углеводороды горят с образованием углекислого газа и воды. Га­зообразные углеводороды, смешанные с воздухом в определенных соотношениях, могут взрываться.

    1. Горение предельных углеводородов - это сво­боднорадикальная экзотермическая реакция, кото­рая имеет очень большое значение при использова­нии алканов в качестве топлива:

    В общем виде реакцию горения алканов можно записать следующим образом:

    2. Термическое расщепление углеводородов .

    Процесс протекает по свободнорадикальному механизму . Повышение температуры приводит к гомолитическому разрыву углерод-углеродной связи и образованию свободных радикалов.

    Эти радикалы взаимодействуют между собой, обмениваясь атомом водорода, с образованием мо­лекулы алкана и молекулы алкена :

    Реакции термического расщепления лежат в ос­нове промышленного процесса - крекинга угле­водородов . Этот процесс является важнейшей ста­дией переработки нефти.

    3. Пиролиз . При нагревании метана до темпе­ратуры 1000 °С начинается пиролиз метана - раз­ложение на простые вещества:

    При нагревании до температуры 1500 °С воз­можно образование ацетилена :

    4. Изомеризация . При нагревании линейных углеводородов с катализатором изомеризации (хло­ридом алюминия) происходит образование веществ с разветвленным углеродным скелетом :

    5. Ароматизация . Алканы с шестью или более углеродными атомами в цепи в присутствии ка­тализатора циклизуются с образованием бензола и его производных:

    Алканы вступают в реакции, протекающие по свободнорадикальному механизму, т. к. все атомы углерода в молекулах алканов находятся в состоянии sp 3 -гибридизации. Молекулы этих веществ по­строены при помощи ковалентных неполярных С-С (углерод - углерод) связей и слабополярных С-Н (углерод - водород) связей. В них нет участков с повышенной и с пониженной электронной плотностью, легко поляризуемых связей, т. е. таких связей, электронная плотность в которых может смещаться под действием внешних факторов (элек­тростатических полей ионов). Следовательно, алка­ны не будут реагировать с заряженными частицами, т. к. связи в молекулах алканов не разрываются по гетеролитическому механизму.

    Строение алканов

    Химическое строение (порядок соединения атомов в молекулах) простейших алканов – метана, этана и пропана – показывают их структурные формулы, приведенные в разделе 2. Из этих формул видно, что в алканах имеются два типа химических связей:

    С–С и С–Н.

    Связь С–С является ковалентной неполярной. Связь С–Н - ковалентная слабополярная, т.к. углерод и водород близки по электроотрицательности (2.5 - для углерода и 2.1 - для водорода). Образование ковалентных связей в алканах за счет общих электронных пар атомов углерода и водорода можно показать с помощью электронных формул:

    Электронные и структурные формулы отражают химическое строение, но не дают представления о пространственном строении молекул, которое существенно влияет на свойства вещества.

    Пространственное строение, т.е. взаимное расположение атомов молекулы в пространстве, зависит от направленности атомных орбиталей (АО) этих атомов. В углеводородах главную роль играет пространственная ориентация атомных орбиталей углерода, поскольку сферическая 1s-АО атома водорода лишена определенной направленности.

    Пространственное расположение АО углерода в свою очередь зависит от типа его гибридизации (часть I, раздел 4.3). Насыщенный атом углерода в алканах связан с четырьмя другими атомами. Следовательно, его состояние соответствует sp3-гибридизации (часть I, раздел 4.3.1). В этом случае каждая из четырех sp3-гибридных АО углерода участвует в осевом (σ-) перекрывании с s-АО водорода или с sp3-АО другого атома углерода, образуя σ-связи С-Н или С-С.

    Четыре σ-связи углерода направлены в пространстве под углом 109о28", что соответствует наименьшему отталкиванию электронов. Поэтому молекула простейшего представителя алканов – метана СН4 – имеет форму тетраэдра, в центре которого находится атом углерода, а в вершинах – атомы водорода:

    Валентный угол Н-С-Н равен 109о28". Пространственное строение метана можно показать с помощью объемных (масштабных) и шаростержневых моделей.

    Для записи удобно использовать пространственную (стереохимическую) формулу.

    В молекуле следующего гомолога – этана С2Н6 – два тетраэдрических sp3-атома углерода образуют более сложную пространственную конструкцию:

    Для молекул алканов, содержащих свыше 2-х атомов углерода, характерны изогнутые формы.Это можно показать на примере н-бутана (VRML-модель) или н-пентана:

    Изомерия алканов

    Изомерия – явление существования соединений, которые имеют одинаковый состав (одинаковую молекулярную формулу), но разное строение. Такие соединения называются изомерами .

    Различия в порядке соединения атомов в молекулах (т.е. в химическом строении) приводят кструктурной изомерии . Строение структурных изомеров отражается структурными формулами. В ряду алканов структурная изомерия проявляется при содержании в цепи 4-х и более атомов углерода, т.е. начиная с бутана С 4 Н 10 . Если в молекулах одинакового состава и одинакового химического строения возможно различное взаимное расположение атомов в пространстве, то наблюдается пространственная изомерия (стереоизомерия) . В этом случае использование структурных формул недостаточно и следует применять модели молекул или специальные формулы - стереохимические (пространственные) или проекционные.

    Алканы, начиная с этана H 3 C–СН 3 , существуют в различных пространственных формах (конформациях ), обусловленных внутримолекулярным вращением по σ-связям С–С, и проявляют так называемую поворотную (конформационную) изомерию .

    Кроме того, при наличии в молекуле атома углерода, связанного с 4-мя различными заместителями, возможен еще один вид пространственной изомерии, когда два стереоизомера относятся друг к другу как предмет и его зеркальное изображение (подобно тому, как левая рука относится к правой). Такие различия в строении молекул называют оптической изомерией .

    . Структурная изомерия алканов

    Структурные изомеры - соединения одинакового состава, отличающиеся порядком связывания атомов, т.е. химическим строением молекул.

    Причиной проявления структурной изомерии в ряду алканов являетсяспособность атомов углерода образовывать цепи различного строения.Этот вид структурной изомерии называется изомерией углеродного скелета .

    Например, алкан состава C 4 H 10 может существовать в виде двух структурных изомеров:

    а алкан С 5 Н 12 – в виде трех структурных изомеров,отличающихся строением углеродной цепи:

    С увеличением числа атомов углерода в составе молекул увеличиваютсявозможности дляразветвления цепи, т.е. количество изомеров растет сростом числа углеродных атомов.

    Структурные изомеры отличаются физическими свойствами. Алканы с разветвленным строением из-за менее плотной упаковки молекул и,соответственно, меньших межмолекулярных взаимодействий, кипят при болеенизкой температуре, чем их неразветвленные изомеры.

    Приемы построения структурных формул изомеров

    Рассмотрим на примере алкана С 6 Н 14 .

    1. Сначала изображаем молекулу линейного изомера (ее углеродный скелет)

    2. Затем цепь сокращаем на 1 атом углерода и этот атом присоединяем к какому-либо атому углерода цепи как ответвление от нее, исключая крайние положения:

    Если присоединить углеродный атом к одному из крайних положений, то химическое строение цепи не изменится:

    Кроме того, нужно следить, чтобы не было повторов. Так, структура идентична структуре (2).

    3. Когда все положения основной цепи исчерпаны, сокращаем цепь еще на 1 атом углерода:

    Теперь в боковых ответвлениях разместятся 2 атома углерода. Здесь возможны следующие сочетания атомов:

    Боковой заместитель может состоять из 2-х или более последовательно соединенных атомов углерода, но для гексана изомеров с такими боковыми ответвлениями не существует, и структура идентична структуре (3).

    Боковой заместитель  СС можно размещать только в цепи, содержащей не меньше 5-ти углеродных атомов и присоединять его можно только к 3-му и далее атому от конца цепи.

    4. После построения углеродного скелета изомера необходимо дополнить все углеродные атомы в молекуле связями с водородом, учитывая, что углерод четырехвалентен.

    Итак, составу С 6 Н 14 соответствует 5 изомеров: 1) 2)3)4)5)

    Номенклатура

    Номенклатура органических соединений – система правил, позволяющих дать однозначное название каждому индивидуальному веществу.

    Это язык химии, который используется для передачи в названиях соединений информации о их строении. Соединению определенного строения соответствует одно систематическое название, и по этому названию можно представить строение соединения (его структурную формулу).

    В настоящее время общепринятой является систематическая номенклатура ИЮПАК (IUPAC – International Union of the Pure and Applied Chemistry – Международный союз теоретической и прикладной химии).

    Наряду с систематическими названиями используются также тривиальные (обыденные) названия, которые связаны с характерным свойством вещества, способом его получения, природным источником, областью применения и т.д., но не отражают его строения.

    Для применения номенклатуры ИЮПАК необходимо знать названия и строение определенных фрагментов молекул – органических радикалов.

    Термин "органический радикал" является структурным понятием и его не следует путать с термином "свободный радикал", который характеризует атом или группу атомов с неспаренным электроном.

    Радикалы в ряду алканов

    Если от молекулы алкана "отнять" один атом водоpода, то обpазуется одновалентный "остаток" – углеводоpодный pадикал (R ). Общее название одновалентных радикалов алканов – алкилы – обpазовано заменой суффикса -ан на -ил : метан – метил , этан – этил , пpопан – пpопил и т.д.

    Одновалентные pадикалы выpажаются общей фоpмулой С n Н 2n+1 .

    Двухвалентный радикал получается, если удалить из молекулы 2 атома водорода. Например, из метана можно образовать двухвалентный радикал –СН 2 – метилен . В названиях таких радикалов используется суффикс -илен .

    Названия радикалов, особенно одновалентных, используются при образовании названий разветвленных алканов и других соединений. Такие радикалы можно рассматривать как составные части молекул, их конструкционные детали. Чтобы дать название соединению необходимо представить, из каких "деталей"-радикалов составлена его молекула.

    Метану СН 4 соответствует один одновалентный радикал метил СН 3 .

    От этана С 2 Н 6 можно произвести также только один радикал - этил CH 2 CH 3 (или  C 2 H 5 ).

    Пропану СН 3 –СН 2 –СН 3 соответствуют два изомерных радикала  С 3 Н 7 :

    Радикалы подразделяются на первичные , вторичные и третичные в зависимости от того, укакого атома углерода (первичного, вторичного или третичного) находится свободная валентность. По этому признаку н-пропил относится к первичным радикалам, а изопропил – к вторичным.

    Двум алканам С 4 Н 10 (н -бутан и изобутан) соответствует 4 одновалентных радикала –С 4 Н 9 :

    От н -бутана производятся н-бутил (первичный радикал) и втор-бутил (вторичный радикал), - от изобутана – изобутил (первичный радикал) и трет-бутил (третичный радикал).

    Таким образом, в ряду радикалов также наблюдается явление изомерии, но при этом число изомеров больше, чем у соответствующих алканов.

    Конструирование молекул алканов из радикалов

    Например, молекулу

    можно "собрать" тремя способами из различных пар одновалентных радикалов:

    Такой подход используется в некоторых синтезах органических соединений, например:

    где R – одновалентный углеводородный радикал (реакция Вюрца).

    Правила построения названий алканов по систематической международной номенклатуре ИЮПАК

    Для простейших алканов (С 1 -С 4) приняты тpивиальные названия: метан, этан, пpопан, бутан, изобутан.

    Начиная с пятого гомолога, названия нормальных (неpазветвленных) алканов стpоят в соответствии с числом атомов углеpода, используя гpеческие числительные и суффикс -ан : пентан, гексан, гептан, октан, нонан, декан и далее...

    В основе названия разветвленного алкана лежит название входящего в его конструкцию нормального алкана с наиболее длинной углеродной цепью. При этом углеводоpод с pазветвленной цепью pассматpивают как пpодукт замещения атомов водоpода в ноpмальном алкане углеводоpодными pадикалами.

    Например, алкан

    рассматривается как замещенный пентан , в котором два атома водорода замещены на радикалы –СН 3 (метил ).

    Порядок построения названия разветвленного алкана

    Выбрать в молекуле главную углеродную цепь. Во-первых, она должна быть самой длинной. Во-вторых, если имеются две или более одинаковые по длине цепи, то из них выбирается наиболее разветвленная. Например, в молекуле есть 2 цепи с одинаковым числом (7) атомов С (выделены цветом):

    В случае (а) цепь имеет 1 заместитель, а в (б) – 2. Поэтому следует выбрать вариант (б).

    Пронумеровать атомы углерода в главной цепи так, чтобы атомы С, связанные с заместителями, получили возможно меньшие номера. Поэтому нумерацию начинают с ближайшего к ответвлению конца цепи. Например:

    Назвать все радикалы (заместители), указав впереди цифры, обозначающие их местоположение в главной цепи. Если есть несколько одинаковых заместителей, то для каждого из них через запятую записывается цифра (местоположение), а их количество указывается приставками ди -, три -, тетра -, пента - и т.д. (например, 2,2-диметил или2,3,3,5-тетраметил ).

    Названия всех заместителей расположить в алфавитном порядке (так установлено последними правилами ИЮПАК).

    Назвать главную цепь углеродных атомов, т.е. соответствующий нормальный алкан.

    Таким образом, в названии разветвленного алкана

    корень+суффикс – название нормального алкана (греч. числительное+суффикс "ан" ), приставки – цифры и названия углеводородных радикалов .

    Пример построения названия:

    Химические свойства алканов

    Химические свойства любого соединения определяются его строением, т.е. природой входящих в его состав атомов и характером связей между ними.

    Исходя из этого положения и справочных данных о связях С–С и С–Н, попробуем предсказать, какие реакции характерны для алканов.

    Во-первых, предельная насыщенность алканов не допускает реакций присоединения, но не препятствует реакциям разложения, изомеризации и замещения (см. часть I, раздел 6.4 "Типы реакций" ). Во-вторых, симметричность неполярных С–С и слабополярных С–Н ковалентных связей (см. в таблице значения дипольных моментов) предполагает их гомолитический (симметричный) разрыв на свободные радикалы (часть I, раздел 6.4.3 ). Следовательно, для реакций алканов характерен радикальный механизм . Поскольку гетеролитический разрыв связей С–С и С–Н в обычных условиях не происходит, то в ионные реакции алканы практически не вступают. Это проявляется в их устойчивости к действию полярных реагентов (кислот, щелочей, окислителей ионного типа: КMnO 4 , К 2 Сr 2 O 7 и т.п.). Такая инертность алканов в ионных реакциях и послужила ранее основанием считать их неактивными веществами и назвать парафинами. Видеоопыт "Отношение метана к раствору перманганата калия и бромной воде". Итак, алканы проявляют свою реакционную способность в основном в радикальных реакциях.

    Условия проведения таких реакций: повышенная температура (часто реакцию проводят в газовой фазе), действие света или радиоактивного излучения, присутствие соединений – источников свободных радикалов (инициаторов), неполярные растворители.

    В зависимости от того, какая связь в молекуле разрывается в первую очередь, реакции алканов подразделяются на следующие типы. С разрывом связей С–С происходят реакции разложения (крекинг алканов) и изомеризации углеродного скелета. По связям С–Н возможны реакции замещения атома водорода или его отщепления (дегидрирование алканов). Кроме того, атомы углерода в алканах находятся в наиболее восстановленной форме (степень окисления углерода, например, в метане равна –4, в этане –3 и т.д.) и в присутствии окислителей в определенных условиях будут происходить реакции окисления алканов с участием связей С–С и С–Н.

    Крекинг алканов

    Крекинг – процесс термического разложения углеводородов, в основе которого лежат реакции расщепления углеродной цепи крупных молекул с образованием соединений с более короткой цепью.

    Крекинг алканов является основой переработки нефти с целью получения продуктов меньшей молекулярной массы, которые используются в качестве моторных топлив, смазочных масел и т.п., а также сырья для химической и нефтехимической промышленности. Для осуществления этого процесса используются два способа: термический крекинг (при нагревании без доступа воздуха) и каталитический крекинг (более умеренное нагревание в присутствии катализатора).

    Термический крекинг . При температуре 450–700 o С алканы распадаются за счет разрыва связей С–С (более прочные связи С–Н при такой температуре сохраняются) и образуются алканы и алкены с меньшим числом углеродных атомов.

    Например:

    C 6 H 14 C 2 H 6 + C 4 H 8

    Распад связей происходит гомолитически с образованием свободных радикалов:

    Свободные радикалы очень активны. Один из них (например, этил) отщепляет атомарный водород Н от другого (н -бутила) и превращается в алкан (этан). Другой радикал, став двухвалентным, превращается в алкен (бутен-1) за счет образования π–связи при спаривании двух электронов у соседних атомов:

    Анимация (работа Литвишко Алексея, ученика 9 кл. школы №124 г. Самары)

    Разрыв С–С-связи возможен в любом случайном месте молекулы. Поэтому образуется смесь алканов и алкенов с меньшей, чем у исходного алкана, молекулярной массой.

    В общем виде этот процесс можно выразить схемой:

    C n H 2n+2 C m H 2m + C p H 2p+2 , где m + p = n

    При более высокой температуре (свыше 1000С) происходит разрыв не только связей С–С,но и более прочных связей С–Н. Например, термический крекинг метана используется для получения сажи (чистыйуглерод) и водорода:

    СН 4 C + 2H 2

    Термический крекинг был открыт русским инженером В.Г. Шуховым в 1891 г.

    Каталитический крекинг проводят в присутствии катализаторов (обычно оксидов алюминия и кремния) при температуре 500С и атмосферном давлении. При этом наряду с разрывом молекул происходят реакции изомеризации и дегидрирования. Пример: крекинг октана (работа Литвишко Алексея, ученика 9 кл. школы №124 г. Самары). При дегидрировании алканов образуются циклические углеводороды (реакциядегидроциклизации , раздел 2.5.3 ). Наличие в составе бензина разветвлённых и циклических углеводородов повышает его качество (детонационную устойчивость, выражаемую октановым числом). При крекинг-процессах образуется большое количество газов, которые содержат главным образом предельные и непредельные углеводороды. Эти газы используются в качестве сырья для химической промышленности. Основополагающие работы по каталитическому крекингу в присутствии хлорида алюминия проведены Н.Д. Зелинским .

    Изомеризация алканов

    Алканы нормального строения под влиянием катализаторов и при нагревании способны превращаться в разветвленные алканы без изменения состава молекул, т.е. вступать в реакции изомеpизации. В этих pеакциях участвуют алканы, молекулы которых содержат не менее 4-х углеродных атомов.

    Например, изомеризация н-пентана в изопентан (2-метилбутан) происходит при 100С в присутствии катализатора хлорида алюминия:

    Исходное вещество и продукт реакции изомеризации имеют одинаковые молекулярные формулы и являются структурными изомерами (изомерия углеродного скелета).

    Дегидрирование алканов

    При нагревании алканов в присутствии катализаторов (Pt, Pd, Ni, Fe, Cr 2 O 3 , Fe 2 O 3 , ZnO) происходит их каталитическое дегидрирование – отщепления атомов водорода за счет разрыва связей С-Н.

    Строение продуктов дегидрирования зависит от условий реакции и длины основной цепи в молекуле исходного алкана.

    1. Низшие алканы, содержащие в цепи от 2-х до 4-х атомов углерода, при нагревании над Ni-катализатором отщепляют водород от соседних углеродных атомов и превращаются в алкены :

    Наряду с бутеном-2 в этой реакции образуется бутен-1 CH 2 =CH-CH 2 -CH 3 . В присутствии катализатора Cr 2 O 3 /Al 2 O 3 при 450-650 С из н -бутана получают также бутадиен-1,3 CH 2 =CH-CH=CH 2 .

    2. Алканы, содержащие в основной цепи больше 4-х атомов углерода, используются для получения циклических соединений. При этом происходит дегидроциклизация – реакция дегидрирования, которая приводит к замыканию цепи в устойчивый цикл.

    Если основная цепь молекулы алкана содержит 5 (но не более) атомов углерода (н -пентан и его алкильные производные), то при нагревании над Pt-катализатором атомы водорода отщепляются от концевых атомов углеродной цепи, и образуется пятичленный цикл (циклопентан или его производные):

    Алканы с основной цепью в 6 и более атомов углерода также вступают в реакцию дегидроциклизации, но всегда образуют 6-членный цикл (циклогексан и его производные). В условиях реакции этот цикл подвергается дальнейшему дегидрированию и превращается в энергетически более устойчивый бензольный цикл ароматического углеводорода (арена). Например:

    Эти реакции лежат в основе процесса риформинга – переработки нефтепродуктов с целью получения аренов (ароматизация предельных углеводородов) и водорода. Превращение н- алканов в арены ведет к улучшению детонационной стойкости бензина.

    3. При 1500 С происходит межмолекулярное дегидрирование метана по схеме:

    Данная реакция (пиролиз метана ) используется для промышленного получения ацетилена.

    Реакции окисления алканов

    В органической химии реакции окисления и восстановления рассматриваются как реакции, связанные с потерей и приобретением органическим соединением атомов водорода и кислорода. Эти процессы, естественно, сопровождаются изменением степеней окисления атомов (часть I, раздел 6.4.1.6 ).

    Окисление органического вещества - введение в его состав кислорода и (или) отщепление водорода. Восстановление - обратный процесс (введение водорода и отщепление кислорода). Учитывая состав алканов (С n H 2n+2), можно сделать вывод о их неспособности вступать в реакции восстановления, но возможности участвовать в реакциях окисления.

    Алканы - соединения с низкими степенями окисления углерода, и в зависимости от условий реакции они могут окисляться с образованием различных соединений.

    При обычной температуре алканы не вступают в реакции даже с сильными окислителями (Н 2 Cr 2 O 7 , KMnO 4 и т.п.). При внесении в открытое пламя алканы горят. При этом в избытке кислорода происходит их полное окисление до СО 2 , где углерод имеет высшую степень окисления +4, и воды. Горение углеводородов приводит к разрыву всех связей С-С и С-Н и сопровождается выделением большого количества тепла (экзотермическая реакция).

    Низшие (газообразные) гомологи – метан, этан, пропан, бутан – легко воспламеняются и образуют с воздухом взрывоопасные смеси, что необходимо учитывать при их использовании. С увеличением молекулярной массы алканы загораются труднее. Видеоопыт "Взрыв смеси метана с кислородом". Видеоопыт "Горение жидких алканов". Видеоопыт "Горение парафина".

    Процесс горения углеводородов широко используется для получения энергии (в двигателях внутреннего сгорания, в тепловых электростанциях и т.п.).

    Уравнение реакции горения алканов в общем виде:

    Из этого уравнения следует, что с увеличением числа углеродных атомов (n ) в алкане увеличивается количество кислорода, необходимого для его полного окисления. При горении высших алканов (n >>1) кислорода, содержащегося в воздухе, может оказаться недостаточно для их полного окисления до СО 2 . Тогда образуются продукты частичного окисления: угарный газ СО (степень окисления углерода +2), сажа (мелкодисперсный углерод, нулевая степень окисления). Поэтому высшие алканы горят на воздухе коптящим пламенем, а выделяющийся попутно токсичный угарный газ (без запаха и цвета) представляет опасность для человека.

    АЛКАНЫ (предельные углеводороды, парафины)

    • Алканы – алифатические (ациклические) предельные углеводороды, в которых атомы углерода связаны между собой простыми (одинарными) связями в неразветвленные или разветвленные цепи.

    Алканы – название предельных углеводородов по международной номенклатуре.
    Парафины – исторически сложившееся название, отражающее свойства этих соединений (от лат. parrum affinis – имеющий мало сродства, малоактивный).
    Предельными , или насыщенными , эти углеводороды называют в связи с полным насыщением углеродной цепи атомами водорода.

    Простейшие представители алканов:

    Модели молекул:


    При сравнении этих соединений видно, что они отличаются друг от друга на группу -СН 2 - (метилен ). Добавляя к пропану еще одну группу -СН 2 - , получим бутан С 4 Н 10 , затем алканы С 5 Н 12 , С 6 Н 14 и т.д.

    Теперь можно вывести общую формулу алканов. Число атомов углерода в ряду алканов примем за n , тогда число атомов водорода составит величину 2n+2 . Следовательно, состав алканов соответствует общей формуле C n H 2n+2 .
    Поэтому часто используется такое определение:

    Алканы - углеводороды, состав которых выражается общей формулой C n H 2n+2 , где n – число атомов углерода.

    Строение алканов

    Химическое строение (порядок соединения атомов в молекулах) простейших алканов – метана, этана и пропана – показывают их структурные формулы, приведенные в разделе 2. Из этих формул видно, что в алканах имеются два типа химических связей:

    С–С и С–Н .

    Связь С–С является ковалентной неполярной. Связь С–Н - ковалентная слабополярная, т.к. углерод и водород близки по электроотрицательности (2.5 - для углерода и 2.1 - для водорода). Образование ковалентных связей в алканах за счет общих электронных пар атомов углерода и водорода можно показать с помощью электронных формул:

    Электронные и структурные формулы отражают химическое строение , но не дают представления о пространственном строении молекул , которое существенно влияет на свойства вещества.

    Пространственное строение , т.е. взаимное расположение атомов молекулы в пространстве, зависит от направленности атомных орбиталей (АО) этих атомов. В углеводородах главную роль играет пространственная ориентация атомных орбиталей углерода, поскольку сферическая 1s-АО атома водорода лишена определенной направленности.

    Пространственное расположение АО углерода в свою очередь зависит от типа его гибридизации (часть I, раздел 4.3). Насыщенный атом углерода в алканах связан с четырьмя другими атомами. Следовательно, его состояние соответствует sp 3 -гибридизации (часть I, раздел 4.3.1). В этом случае каждая из четырех sp 3 -гибридных АО углерода участвует в осевом (σ-) перекрывании с s-АО водорода или с sp 3 -АО другого атома углерода, образуя σ-связи С-Н или С-С.



    Четыре σ-связи углерода направлены в пространстве под углом 109 о 28", что соответствует наименьшему отталкиванию электронов. Поэтому молекула простейшего представителя алканов – метана СН 4 – имеет форму тетраэдра, в центре которого находится атом углерода, а в вершинах – атомы водорода:

    Валентный угол Н-С-Н равен 109 о 28". Пространственное строение метана можно показать с помощью объемных (масштабных) и шаростержневых моделей.

    Для записи удобно использовать пространственную (стереохимическую) формулу.

    В молекуле следующего гомолога – этана С 2 Н 6 – два тетраэдрических sp 3 -атома углерода образуют более сложную пространственную конструкцию:

    Для молекул алканов, содержащих свыше 2-х атомов углерода, характерны изогнутые формы. Это можно показать на примере н -бутана (VRML-модель) или н -пентана:

    Изомерия алканов

    • Изомерия – явление существования соединений, которые имеют одинаковый состав (одинаковую молекулярную формулу), но разное строение. Такие соединения называются изомерами .

    Различия в порядке соединения атомов в молекулах (т.е. в химическом строении) приводят к структурной изомерии . Строение структурных изомеров отражается структурными формулами. В ряду алканов структурная изомерия проявляется при содержании в цепи 4-х и более атомов углерода, т.е. начиная с бутана С 4 Н 10 .
    Если в молекулах одинакового состава и одинакового химического строения возможно различное взаимное расположение атомов в пространстве, то наблюдается пространственная изомерия (стереоизомерия) . В этом случае использование структурных формул недостаточно и следует применять модели молекул или специальные формулы - стереохимические (пространственные) или проекционные.

    Алканы, начиная с этана H 3 C–СН 3 , существуют в различных пространственных формах (конформациях ), обусловленных внутримолекулярным вращением по σ-связям С–С, и проявляют так называемую поворотную (конформационную) изомерию .

    Кроме того, при наличии в молекуле атома углерода, связанного с 4-мя различными заместителями, возможен еще один вид пространственной изомерии, когда два стереоизомера относятся друг к другу как предмет и его зеркальное изображение (подобно тому, как левая рука относится к правой). Такие различия в строении молекул называют оптической изомерией .

    Структурная изомерия алканов

    • Структурные изомеры - соединения одинакового состава, отличающиеся порядком связывания атомов, т.е. химическим строением молекул.

    Причиной проявления структурной изомерии в ряду алканов являетсяспособность атомов углерода образовывать цепи различного строения.Этот вид структурной изомерии называется изомерией углеродного скелета .

    Например, алкан состава C 4 H 10 может существовать в виде двух структурных изомеров:

    а алкан С 5 Н 12 – в виде трех структурных изомеров,отличающихся строением углеродной цепи:

    С увеличением числа атомов углерода в составе молекул увеличиваютсявозможности для разветвления цепи, т.е. количество изомеров растет сростом числа углеродных атомов.

    Структурные изомеры отличаются физическими свойствами. Алканы с разветвленным строением из-за менее плотной упаковки молекул и,соответственно, меньших межмолекулярных взаимодействий, кипят при болеенизкой температуре, чем их неразветвленные изомеры.

    При выводе структурных формул изомеров используют следующие приемы.

    • Химические свойства любого соединения определяются его строением, т.е. природой входящих в его состав атомов и характером связей между ними .

    Во-первых, предельная насыщенность алканов не допускает реакций присоединения, но не препятствует реакциям разложения, изомеризации и замещения .

    Во-вторых, симметричность неполярных С–С и слабополярных С–Н ковалентных связей предполагает их гомолитический (симметричный) разрыв на свободные радикалы.

    Следовательно, для реакций алканов характерен радикальный механизм .

    Поскольку гетеролитический разрыв связей С–С и С–Н в обычных условиях не происходит, то в ионные реакции алканы практически не вступают. Это проявляется в их устойчивости к действию полярных реагентов (кислот, щелочей, окислителей ионного типа: КMnO 4 , К 2 Сr 2 O 7 и т.п.). Такая инертность алканов в ионных реакциях и послужила ранее основанием считать их неактивными веществами и назвать парафинами.

    Видео YouTube

    2. Изомеризация алканов

    Алканы нормального строения под влиянием катализаторов и при нагревании способны превращаться в разветвленные алканы без изменения состава молекул, т.е. вступать в реакции изомеpизации. В этих pеакциях участвуют алканы, молекулы которых содержат не менее 4-х углеродных атомов.

    Например, изомеризация н-пентана в изопентан (2-метилбутан) происходит при 100°С в присутствии катализатора хлорида алюминия:

    Исходное вещество и продукт реакции изомеризации имеют одинаковые молекулярные формулы и являются структурными изомерами (изомерия углеродного скелета).

    3. Дегидрирование алканов

    При нагревании алканов в присутствии катализаторов (Pt, Pd, Ni, Fe, Cr 2 O 3 , Fe 2 O 3 , ZnO) происходит их каталитическое дегидрирование – отщепления атомов водорода за счет разрыва связей С-Н.

      Строение продуктов дегидрирования зависит от условий реакции и длины основной цепи в молекуле исходного алкана.

    1. Низшие алканы, содержащие в цепи от 2-х до 4-х атомов углерода, при нагревании над Ni-катализатором отщепляют водород отсоседних углеродных атомов и превращаются в алкены :


      Наряду с бутеном-2 в этой реакции образуется бутен-1 CH 2 =CH-CH 2 -CH 3 .
      В присутствии катализатора Cr 2 O 3 /Al 2 O 3 при 450-650 °С из н -бутана получают также бутадиен-1,3 CH 2 =CH-CH=CH 2 .

    2. Алканы, содержащие в основной цепи больше 4-х атомов углерода, используются для получения циклических соединений. При этом происходит дегидроциклизация – реакция дегидрирования, которая приводит к замыканию цепи в устойчивый цикл.

    3. При 1500 °С происходит межмолекулярное дегидрирование метана по схеме:


    4. Реакции окисления алканов

    В органической химии реакции окисления и восстановления рассматриваются как реакции, связанные с потерей и приобретением органическим соединением атомов водорода и кислорода . Эти процессы, естественно, сопровождаются изменением степеней окисления атомов.

    Окисление органического вещества - введение в его состав кислорода и (или) отщепление водорода. Восстановление - обратный процесс (введение водорода и отщепление кислорода). Учитывая состав алканов (С n H 2n+2), можно сделать вывод о их неспособности вступать в реакции восстановления, но возможности участвовать в реакциях окисления.

    Алканы - соединения с низкими степенями окисления углерода, и в зависимости от условий реакции они могут окисляться с образованием различных соединений.

    При обычной температуре алканы не вступают в реакции даже с сильными окислителями (Н 2 Cr 2 O 7 , KMnO 4 и т.п.). При внесении в открытое пламя алканы горят. При этом в избытке кислорода происходит их полное окисление до СО 2 , где углерод имеет высшую степень окисления +4, и воды. Горение углеводородов приводит к разрыву всех связей С-С и С-Н и сопровождается выделением большого количества тепла (экзотермическая реакция).

    Примеры:

    Низшие (газообразные) гомологи – метан, этан, пропан, бутан – легко воспламеняются и образуют с воздухом взрывоопасные смеси, что необходимо учитывать при их использовании. С увеличением молекулярной массы алканы загораются труднее.

    Процесс горения углеводородов широко используется для получения энергии (в двигателях внутреннего сгорания, в тепловых электростанциях и т.п.).

    Уравнение реакции горения алканов в общем виде:

    Из этого уравнения следует, что с увеличением числа углеродных атомов (n ) в алкане увеличивается количество кислорода, необходимого для его полного окисления. При горении высших алканов (n >>1) кислорода, содержащегося в воздухе, может оказаться недостаточно для их полного окисления до СО 2 . Тогда образуются продукты частичного окисления :

    • угарный газ СО (степень окисления углерода +2),
    • сажа (мелкодисперсный углерод, нулевая степень окисления).

    Поэтому высшие алканы горят на воздухе коптящим пламенем , а выделяющийся попутно токсичный угарный газ (без запаха и цвета) представляет опасность для человека.

    Горение метана при недостатке кислорода происходит по уравнениям:

    Последняя реакция используется в промышленности для получения сажи из природного газа, содержащего 80-97% метана.

    Частичное окисление алканов при относительно невысокой температуре и с применением катализаторов сопровождается разрывом только части связей С-С и С-Н и используется для получения ценных продуктов: карбоновых кислот, кетонов, альдегидов, спиртов. Например, при неполном окислении бутана (разрыв связи С 2 -С 3) получают уксусную кислоту:

    В ысшие алканы (n>25) под действием кислорода воздуха в жидкой фазе в присутствии солей марганца превращаются в смесь карбоновых кислот со средней длиной цепи С 12 -С 18 , которые используются для получения моющих средств и поверхностно-активных веществ.

    Важное значение имеет реакция взаимодействия метана с водяным паром, в результате которой образуется смесь оксида углерода (II) с водородом - "синтез-газ":

    Эта реакция используется для получения водорода. Синтез-газ служит сырьем для получения различных углеводородов.


    5. Реакции замещения

    В молекулах алканов связи C-Н пространственно более доступны для атаки другими частицами, чем менее прочные связи C-C. В определенных условиях происходит разрыв именно С-Н-связей и осуществляется замена атомов водорода на другие атомы или группы атомов.

    1. Галогенирование

    Галогенирование алканов – реакция замещения одного или более атомов водорода в молекуле алкана на галоген. Продукты реакции называют галогеналканами или галогенопроизводными алканов. Реакция алканов с хлором и бромом идет на свету или при нагревании.

    Хлорирование метана :

    Углеводороды представляют собой простейшие органические соединения. Их составляют углерод и водород. Соединения этих двух элементов называются предельными углеводородами или алканами. Их состав выражается общей для алканов формулой CnH2n+2, где n - количество атомов углерода.

    Вконтакте

    Одноклассники

    Алканы - международное наименование данных соединений . Также эти соединения называют парафинами и насыщенными углеводородами. Связь в молекулах алканов простая (или одинарная). Остальные валентности насыщены атомами водорода. Все алканы насыщены водородом до предела, его атомы находятся в состоянии sp3-гибридизации.

    Гомологический ряд предельных углеводородов

    Первым в гомологическом ряду насыщенных углеводородов стоит метан. Его формула CH4. Окончание -ан в наименовании предельных углеводородов являет отличительным признаком. Далее в соответствии с приведенной формулой в гомологическом ряду располагаются этан - C2H6, пропан C3H8, бутан - C4H10.

    С пятого алкана в гомологическом ряду названия соединений образуются следующим образом: греческое число, указывающее число атомов углеводорода в молекуле + окончание -ан. Так, по-гречески число 5 - пэндэ, соответственно за бутаном идет пентан - C5H12. Далее - гексан C6H14. гептан - C7H16, октан - C8H18, нонан - C9H20, декан - C10H22 и т. д.

    Физические свойства алканов заметно изменяются в гомологическом ряду: увеличивается температура плавления, кипения, увеличивается плотность. Метан, этан, пропан, бутан при обычных условиях, т. е. при температуре равной примерно 22 градуса тепла по Цельсию, являются газами, с пентана по гексадекан включительно - жидкостями, с гептадекана - твердыми веществами. Начиная с бутана, у алканов есть изомеры.

    Существуют таблицы, отражающие изменения в гомологическом ряду алканов , которые наглядно отражают их физические свойства.

    Номенклатура насыщенных углеводородов, их производные

    Если происходит отрыв атома водорода от молекулы углеводорода, то образуются одновалентные частицы, которые называют радикалами (R). Название радикалу дает то углеводород, из которого этот радикал произведен, при этом окончание -ан меняется на окончание -ил. Например, из метана при отрыве атома водорода образуется радикал метил, из этана - этил, из пропана - пропил и т. д.

    Радикалы также образуются и неорганическими соединениям. Например, отняв у азотной кислоты гидроксильную группу ОН, можно получить одновалентный радикал -NO2, который называется нитрогруппой.

    При отрыве от молекулы алкана двух атомов водорода образуется двухвалентные радикалы, названия которых также образуются из названия соответствующих углеводородов, но окончание меняется на:

    • илиен, в том случае, если атомы водорода оторваны от одного атома углерода,
    • илен, в том случае, если от двух атомы водорода оторваны от двух соседних атомов углерода.

    Алканы: химические свойства

    Рассмотрим реакции, характерные для алканов. Всем алканам присущи общие химические свойства. Данные вещества являются малоактивными.

    Все известные реакции с участием углеводородов подразделяются на два вида:

    • разрыв связи С-Н (примером может служить реакция замещения);
    • разрыв связи С-С (крекинг, образование отдельных частей).

    Очень активны в момент образования радикалы. Сами по себе они существуют доли секунды. Радикалы легко вступают в реакции между собой. Их неспаренные электроны образуют новую ковалентную связь. Пример: CH3 + CH3 → C2H6

    Радикалы легко вступают в реакции с молекулами органических веществ. Они либо присоединяются к ним, либо отрывают от них атом с неспаренным электроном, в результате чего появляются новые радикалы, которые, в свою очередь, могут вступать в реакции с другими молекулами. При такой цепной реакции получаются макромолекулы, которые перестают расти только тогда, когда оборвется цепь (пример: соединение двух радикалов)

    Реакции свободных радикалов объясняют многие важные химические процессы, такие как:

    • Взрывы;
    • Окисления;
    • Крекинг нефти;
    • Полимеризацию непредельных соединений.

    Подробно можно рассмотреть химические свойства насыщенных углеводородов на примере метана. Выше мы уже рассматривали строение молекулы алкана. Атомы углерода находятся в молекуле метана в состоянии sp3-гибридизации, и образуется достаточно прочная связь. Метан представляет собой газ баз запаха и цвета. Он легче воздуха. В воде малорастворим.

    Алканы могут гореть. Горит метан синеватым бледным пламенем. При этом результатом реакции будут оксид углерода и вода. При смешивании с воздухом, а также в смеси с кислородом, особенно если соотношение объемов будет 1:2, данные углеводород образует взрывчатые смеси, из-за чего он крайне опасен для применения в быту и шахтах. Если метан сгорает не полностью, то образуется сажа. В промышленности ее таким образом и получают.

    Из метана получают формальдегид и метиловый спирт путем его окисления в присутствии катализаторов. Если же метан сильно нагреть, то он распадается по формуле CH4 → C + 2H2

    Распад метана можно осуществить до промежуточного продукта в специально оборудованных печах. Промежуточным продуктом будет ацетилен. Формула реакции 2CH4 → C2H2 + 3H2. Выделение ацетилена из метана сокращает расходы производства почти в два раза.

    Также из метана получают водород, производя конверсию метана с водяным паром. Характерными для метана являются реакции замещения. Так, при обычной температуре, на свету галогены (Cl, Br) по стадиям вытесняют водород из молекулы метана. Таким образом образуются вещества, называемые галогенопроизводными. Атомы хлора , замещая в молекуле углеводорода атомы водорода, образуют смесь разных соединений.

    В такой смеси присутствуют хлорметан (CH3 Cl или хлористый метил), дихлорметан (CH2Cl2или хлористый метилен), трихлорметан (CHCl3 или хлороформ), тетрахлорметан (CCl4 или четыреххлористый углерод).

    Любое из этих соединений может быть выделено из смеси. В производстве важное значение отводится хлороформу и тетрахлорметану, в силу того, что они являются растворителями органических соединений (жиров, смол, каучука). Галогенопроизводные метана образуются по цепному свободнорадикальному механизму.

    Свет воздействует на молекулы хлора, вследствие чего они распадаются на неорганические радикалы, которые отрывают атом водорода с одним электроном от молекулы метана. При этом образуется HCl и метил. Метил реагирует с молекулой хлора, в результате чего получается галогенопроизводное и радикал хлора. Далее радикал хлора продолжает цепную реакцию.

    При обычной температуре метан обладает достаточной стойкостью к щелочам, кислотам, многим окислителям. Исключение - азотная кислота. В реакции с ней образуется нитрометан и вода.

    Реакции присоединения для метана не характерны, т. к. все валентности в его молекуле насыщены.

    Реакции, в которых участвуют углеводороды могут проходить не только с расщеплением связи С-Н, но и с разрывом связи С-С. Такие превращения происходят при наличии высоких температур и катализаторов. К таким реакциям относятся дегидрогенизация и крекинг.

    Из насыщенных углеводородов путем окисления получают кислоты - уксусную (из бутана), жирные кислоты (из парафина).

    Получение метана

    В природе метан распространен достаточно широко. Он - главная составная часть большинства горючих природных и искусственных газов. Он выделяется из каменноугольных пластов в рудниках, со дна болот. Природные газы (что очень заметно в попутных газах нефтяных месторождений) содержат не только метан, но и другие алканы. Применение этих веществ разнообразно. Они используются как топливо, на различных производствах, в медицине и технике.

    В условиях лаборатории данный газ выделяют при нагревании смеси ацетат натрия + гидроксид натрия, а также реакцией карбида алюминия и воды. Также метан получают из простых веществ. Для этого обязательными условиями являются нагрев и катализатор. Промышленное значение имеет получение метана синтезом на основе водяного пара.

    Метан и его гомологи могут быть получены при прокаливании солей соответствующих органических кислот с щелочами. Еще одним способом получения алканов является реакция Вюрца, при которой нагреваются моногалогенопроизводные с металлическим натрием.