Войти
Русь. История России. Современная Россия
  • Что изучает социальная психология
  • Океан – наше будущее Роль Мирового океана в жизни Земли
  • Ковер из Байё — какие фильмы смотрели в Средние века
  • Библиотека: читающий малыш
  • Всадник без головы: главные герои, краткая характеристика
  • 3 стили речи. Стили текста. Жанры текста в русском языке. §2. Языковые признаки научного стиля речи
  • Производная exp x. Правила вычисления производных

    Производная exp x. Правила вычисления производных

    Дата: 10.05.2015

    Как найти производную?

    Правила дифференцирования.

    Чтобы найти производную от любой функции, надо освоить всего три понятия:

    2. Правила дифференцирования.

    3. Производная сложной функции.

    Именно в таком порядке. Это намёк.)

    Разумеется, неплохо бы ещё иметь представление о производной вообще). О том, что такое производная, и как работать с таблицей производных - доступно рассказано в предыдущем уроке. Здесь же мы займёмся правилами дифференцирования.

    Дифференцирование - это операция нахождения производной. Более за этим термином ничего не кроется. Т.е. выражения "найти производную функции" и "продифференцировать функцию" - это одно и то же.

    Выражение "правила дифференцирования" относится к нахождению производной от арифметических операций. Такое понимание очень помогает избежать каши в голове.

    Сосредоточимся и вспомним все-все-все арифметические операции. Их четыре). Сложение (сумма), вычитание (разность), умножение (произведение) и деление (частное). Вот они, правила дифференцирования:

    В табличке приведено пять правил на четыре арифметических действия. Я не обсчитался.) Просто правило 4 - это элементарное следствие из правила 3. Но оно настолько популярно, что имеет смысл записать (и запомнить!) его как самостоятельную формулу.

    Под обозначениями U и V подразумеваются какие-то (совершенно любые!) функции U(x) и V(x).

    Рассмотрим несколько примеров. Сначала - самые простые.

    Найти производную функции y=sinx - x 2

    Здесь мы имеем разность двух элементарных функций. Применяем правило 2. Будем считать, что sinx - это функция U , а x 2 - функция V. Имеем полное право написать:

    y" = (sinx - x 2)" = (sinx)"- (x 2)"

    Уже лучше, правда?) Осталось найти производные от синуса и квадрата икса. Для этого существует таблица производных. Просто ищем в таблице нужные нам функции (sinx и x 2 ), смотрим, какие у них производные и записываем ответ:

    y" = (sinx)" - (x 2)" = cosx - 2x

    Вот и все дела. Правило 1 дифференцирования суммы работает точно так же.

    А если у нас несколько слагаемых? Ничего страшного.) Разбиваем функцию на слагаемые и ищем производную от каждого слагаемого независимо от остальных. Например:

    Найти производную функции y=sinx - x 2 +cosx - x +3

    Смело пишем:

    y" = (sinx)" - (x 2)" + (cosx)" - (x)" + (3 )"

    В конце урока дам советы по облегчению жизни при дифференцировании.)

    Практические советы:

    1. Перед дифференцированием смотрим, нельзя ли упростить исходную функцию.

    2. В замороченных примерах расписываем решение подробно, со всеми скобочками и штрихами.

    3. При дифференцировании дробей с постоянным числом в знаменателе, превращаем деление в умножение и пользуемся правилом 4.

    Если следовать определению, то производная функции в точке — это предел отношения приращения функции Δy к приращению аргумента Δx :

    Вроде бы все понятно. Но попробуйте посчитать по этой формуле, скажем, производную функции f (x ) = x 2 + (2x + 3) · e x · sin x . Если все делать по определению, то через пару страниц вычислений вы просто уснете. Поэтому существуют более простые и эффективные способы.

    Для начала заметим, что из всего многообразия функций можно выделить так называемые элементарные функции. Это относительно простые выражения, производные которых давно вычислены и занесены в таблицу. Такие функции достаточно просто запомнить — вместе с их производными.

    Производные элементарных функций

    Элементарные функции — это все, что перечислено ниже. Производные этих функций надо знать наизусть. Тем более что заучить их совсем несложно — на то они и элементарные.

    Итак, производные элементарных функций:

    Название Функция Производная
    Константа f (x ) = C , C R 0 (да-да, ноль!)
    Степень с рациональным показателем f (x ) = x n n · x n − 1
    Синус f (x ) = sin x cos x
    Косинус f (x ) = cos x − sin x (минус синус)
    Тангенс f (x ) = tg x 1/cos 2 x
    Котангенс f (x ) = ctg x − 1/sin 2 x
    Натуральный логарифм f (x ) = ln x 1/x
    Произвольный логарифм f (x ) = log a x 1/(x · ln a )
    Показательная функция f (x ) = e x e x (ничего не изменилось)

    Если элементарную функцию умножить на произвольную постоянную, то производная новой функции тоже легко считается:

    (C · f )’ = C · f ’.

    В общем, константы можно выносить за знак производной. Например:

    (2x 3)’ = 2 · (x 3)’ = 2 · 3x 2 = 6x 2 .

    Очевидно, элементарные функции можно складывать друг с другом, умножать, делить — и многое другое. Так появятся новые функции, уже не особо элементарные, но тоже дифференцируемые по определенным правилам. Эти правила рассмотрены ниже.

    Производная суммы и разности

    Пусть даны функции f (x ) и g (x ), производные которых нам известны. К примеру, можно взять элементарные функции, которые рассмотрены выше. Тогда можно найти производную суммы и разности этих функций:

    1. (f + g )’ = f ’ + g
    2. (f g )’ = f ’ − g

    Итак, производная суммы (разности) двух функций равна сумме (разности) производных. Слагаемых может быть больше. Например, (f + g + h )’ = f ’ + g ’ + h ’.

    Строго говоря, в алгебре не существует понятия «вычитание». Есть понятие «отрицательный элемент». Поэтому разность f g можно переписать как сумму f + (−1) · g , и тогда останется лишь одна формула — производная суммы.

    f (x ) = x 2 + sin x; g (x ) = x 4 + 2x 2 − 3.

    Функция f (x ) — это сумма двух элементарных функций, поэтому:

    f ’(x ) = (x 2 + sin x )’ = (x 2)’ + (sin x )’ = 2x + cos x;

    Аналогично рассуждаем для функции g (x ). Только там уже три слагаемых (с точки зрения алгебры):

    g ’(x ) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 = 4x · (x 2 + 1).

    Ответ:
    f ’(x ) = 2x + cos x;
    g ’(x ) = 4x · (x 2 + 1).

    Производная произведения

    Математика — наука логичная, поэтому многие считают, что если производная суммы равна сумме производных, то производная произведения strike ">равна произведению производных. А вот фиг вам! Производная произведения считается совсем по другой формуле. А именно:

    (f · g ) ’ = f ’ · g + f · g

    Формула несложная, но ее часто забывают. И не только школьники, но и студенты. Результат — неправильно решенные задачи.

    Задача. Найти производные функций: f (x ) = x 3 · cos x; g (x ) = (x 2 + 7x − 7) · e x .

    Функция f (x ) представляет собой произведение двух элементарных функций, поэтому все просто:

    f ’(x ) = (x 3 · cos x )’ = (x 3)’ · cos x + x 3 · (cos x )’ = 3x 2 · cos x + x 3 · (− sin x ) = x 2 · (3cos x x · sin x )

    У функции g (x ) первый множитель чуть посложней, но общая схема от этого не меняется. Очевидно, первый множитель функции g (x ) представляет собой многочлен, и его производная — это производная суммы. Имеем:

    g ’(x ) = ((x 2 + 7x − 7) · e x )’ = (x 2 + 7x − 7)’ · e x + (x 2 + 7x − 7) · (e x )’ = (2x + 7) · e x + (x 2 + 7x − 7) · e x = e x · (2x + 7 + x 2 + 7x −7) = (x 2 + 9x ) · e x = x (x + 9) · e x .

    Ответ:
    f ’(x ) = x 2 · (3cos x x · sin x );
    g ’(x ) = x (x + 9) · e x .

    Обратите внимание, что на последнем шаге производная раскладывается на множители. Формально этого делать не нужно, однако большинство производных вычисляются не сами по себе, а чтобы исследовать функцию. А значит, дальше производная будет приравниваться к нулю, будут выясняться ее знаки и так далее. Для такого дела лучше иметь выражение, разложенное на множители.

    Если есть две функции f (x ) и g (x ), причем g (x ) ≠ 0 на интересующем нас множестве, можно определить новую функцию h (x ) = f (x )/g (x ). Для такой функции тоже можно найти производную:

    Неслабо, да? Откуда взялся минус? Почему g 2 ? А вот так! Это одна из самых сложных формул — без бутылки не разберешься. Поэтому лучше изучать ее на конкретных примерах.

    Задача. Найти производные функций:

    В числителе и знаменателе каждой дроби стоят элементарные функции, поэтому все, что нам нужно — это формула производной частного:


    По традиции, разложим числитель на множители — это значительно упростит ответ:

    Сложная функция — это не обязательно формула длиной в полкилометра. Например, достаточно взять функцию f (x ) = sin x и заменить переменную x , скажем, на x 2 + ln x . Получится f (x ) = sin (x 2 + ln x ) — это и есть сложная функция. У нее тоже есть производная, однако найти ее по правилам, рассмотренным выше, не получится.

    Как быть? В таких случаях помогает замена переменной и формула производной сложной функции:

    f ’(x ) = f ’(t ) · t ’, если x заменяется на t (x ).

    Как правило, с пониманием этой формулы дело обстоит еще более печально, чем с производной частного. Поэтому ее тоже лучше объяснить на конкретных примерах, с подробным описанием каждого шага.

    Задача. Найти производные функций: f (x ) = e 2x + 3 ; g (x ) = sin (x 2 + ln x )

    Заметим, что если в функции f (x ) вместо выражения 2x + 3 будет просто x , то получится элементарная функция f (x ) = e x . Поэтому делаем замену: пусть 2x + 3 = t , f (x ) = f (t ) = e t . Ищем производную сложной функции по формуле:

    f ’(x ) = f ’(t ) · t ’ = (e t )’ · t ’ = e t · t

    А теперь — внимание! Выполняем обратную замену: t = 2x + 3. Получим:

    f ’(x ) = e t · t ’ = e 2x + 3 · (2x + 3)’ = e 2x + 3 · 2 = 2 · e 2x + 3

    Теперь разберемся с функцией g (x ). Очевидно, надо заменить x 2 + ln x = t . Имеем:

    g ’(x ) = g ’(t ) · t ’ = (sin t )’ · t ’ = cos t · t

    Обратная замена: t = x 2 + ln x . Тогда:

    g ’(x ) = cos (x 2 + ln x ) · (x 2 + ln x )’ = cos (x 2 + ln x ) · (2x + 1/x ).

    Вот и все! Как видно из последнего выражения, вся задача свелась к вычислению производной суммы.

    Ответ:
    f ’(x ) = 2 · e 2x + 3 ;
    g ’(x ) = (2x + 1/x ) · cos (x 2 + ln x ).

    Очень часто на своих уроках вместо термина «производная» я использую слово «штрих». Например, штрих от суммы равен сумме штрихов. Так понятнее? Ну, вот и хорошо.

    Таким образом, вычисление производной сводится к избавлению от этих самых штрихов по правилам, рассмотренным выше. В качестве последнего примера вернемся к производной степени с рациональным показателем:

    (x n )’ = n · x n − 1

    Немногие знают, что в роли n вполне может выступать дробное число. Например, корень — это x 0,5 . А что, если под корнем будет стоять что-нибудь навороченное? Снова получится сложная функция — такие конструкции любят давать на контрольных работах и экзаменах.

    Задача. Найти производную функции:

    Для начала перепишем корень в виде степени с рациональным показателем:

    f (x ) = (x 2 + 8x − 7) 0,5 .

    Теперь делаем замену: пусть x 2 + 8x − 7 = t . Находим производную по формуле:

    f ’(x ) = f ’(t ) · t ’ = (t 0,5)’ · t ’ = 0,5 · t −0,5 · t ’.

    Делаем обратную замену: t = x 2 + 8x − 7. Имеем:

    f ’(x ) = 0,5 · (x 2 + 8x − 7) −0,5 · (x 2 + 8x − 7)’ = 0,5 · (2x + 8) · (x 2 + 8x − 7) −0,5 .

    Наконец, возвращаемся к корням:

    Операция отыскания производной называется дифференцированием.

    В результате решения задач об отыскании производных у самых простых (и не очень простых) функций по определению производной как предела отношения приращения к приращению аргумента появились таблица производных и точно определённые правила дифференцирования. Первыми на ниве нахождения производных потрудились Исаак Ньютон (1643-1727) и Готфрид Вильгельм Лейбниц (1646-1716).

    Поэтому в наше время, чтобы найти производную любой функции, не надо вычислять упомянутый выше предел отношения приращения функции к приращению аргумента, а нужно лишь воспользоваться таблицей производных и правилами дифференцирования. Для нахождения производной подходит следующий алгоритм.

    Чтобы найти производную , надо выражение под знаком штриха разобрать на составляющие простые функции и определить, какими действиями (произведение, сумма, частное) связаны эти функции. Далее производные элементарных функций находим в таблице производных, а формулы производных произведения, суммы и частного - в правилах дифференцирования. Таблица производных и правила дифференцирования даны после первых двух примеров.

    Пример 1. Найти производную функции

    Решение. Из правил дифференцирования выясняем, что производная суммы функций есть сумма производных функций, т. е.

    Из таблицы производных выясняем, что производная "икса" равна единице, а производная синуса - косинусу. Подставляем эти значения в сумму производных и находим требуемую условием задачи производную:

    Пример 2. Найти производную функции

    Решение. Дифференцируем как производную суммы, в которой второе слагаемое с постоянным множителем, его можно вынести за знак производной:

    Если пока возникают вопросы, откуда что берётся, они, как правило, проясняются после ознакомления с таблицей производных и простейшими правилами дифференцирования. К ним мы и переходим прямо сейчас.

    Таблица производных простых функций

    1. Производная константы (числа). Любого числа (1, 2, 5, 200...), которое есть в выражении функции. Всегда равна нулю. Это очень важно помнить, так как требуется очень часто
    2. Производная независимой переменной. Чаще всего "икса". Всегда равна единице. Это тоже важно запомнить надолго
    3. Производная степени. В степень при решении задач нужно преобразовывать неквадратные корни.
    4. Производная переменной в степени -1
    5. Производная квадратного корня
    6. Производная синуса
    7. Производная косинуса
    8. Производная тангенса
    9. Производная котангенса
    10. Производная арксинуса
    11. Производная арккосинуса
    12. Производная арктангенса
    13. Производная арккотангенса
    14. Производная натурального логарифма
    15. Производная логарифмической функции
    16. Производная экспоненты
    17. Производная показательной функции

    Правила дифференцирования

    1. Производная суммы или разности
    2. Производная произведения
    2a. Производная выражения, умноженного на постоянный множитель
    3. Производная частного
    4. Производная сложной функции

    Правило 1. Если функции

    дифференцируемы в некоторой точке , то в той же точке дифференцируемы и функции

    причём

    т.е. производная алгебраической суммы функций равна алгебраической сумме производных этих функций.

    Следствие. Если две дифференцируемые функции отличаются на постоянное слагаемое, то их производные равны , т.е.

    Правило 2. Если функции

    дифференцируемы в некоторой точке , то в то же точке дифференцируемо и их произведение

    причём

    т.е. производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой.

    Следствие 1. Постоянный множитель можно выносить за знак производной :

    Следствие 2. Производная произведения нескольких дифференцируемых функций равна сумме произведений производной каждого из сомножителей на все остальные.

    Например, для трёх множителей:

    Правило 3. Если функции

    дифференцируемы в некоторой точке и , то в этой точке дифференцируемо и их частное u/v , причём

    т.е. производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя.

    Где что искать на других страницах

    При нахождении производной произведения и частного в реальных задачах всегда требуется применять сразу несколько правил дифференцирования, поэтому больше примеров на эти производные - в статье "Производная произведения и частного функций " .

    Замечание. Следует не путать константу (то есть, число) как слагаемое в сумме и как постоянный множитель! В случае слагаемого её производная равна нулю, а в случае постоянного множителя она выносится за знак производных. Это типичная ошибка, которая встречается на начальном этапе изучения производных, но по мере решения уже нескольких одно- двухсоставных примеров средний студент этой ошибки уже не делает.

    А если при дифференцировании произведения или частного у вас появилось слагаемое u "v , в котором u - число, например, 2 или 5, то есть константа, то производная этого числа будет равна нулю и, следовательно, всё слагаемое будет равно нулю (такой случай разобран в примере 10).

    Другая частая ошибка - механическое решение производной сложной функции как производной простой функции. Поэтому производной сложной функции посвящена отдельная статья. Но сначала будем учиться находить производные простых функций.

    По ходу не обойтись без преобразований выражений. Для этого может потребоваться открыть в новых окнах пособия Действия со степенями и корнями и Действия с дробями .

    Если Вы ищете решения производных дробей со степенями и корнями, то есть, когда функция имеет вид вроде , то следуйте на занятие "Производная суммы дробей со степенями и корнями ".

    Если же перед Вами задача вроде , то Вам на занятие "Производные простых тригонометрических функций".

    Пошаговые примеры - как найти производную

    Пример 3. Найти производную функции

    Решение. Определяем части выражения функции: всё выражение представляет произведение, а его сомножители - суммы, во второй из которых одно из слагаемых содержит постоянный множитель. Применяем правило дифференцирования произведения: производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой:

    Далее применяем правило дифференцирования суммы: производная алгебраической суммы функций равна алгебраической сумме производных этих функций. В нашем случае в каждой сумме второе слагаемое со знаком минус. В каждой сумме видим и независимую переменную, производная которой равна единице, и константу (число), производная которой равна нулю. Итак, "икс" у нас превращается в единицу, а минус 5 - в ноль. Во втором выражении "икс" умножен на 2, так что двойку умножаем на ту же единицу как производную "икса". Получаем следующие значения производных:

    Подставляем найденные производные в сумму произведений и получаем требуемую условием задачи производную всей функции:

    Пример 4. Найти производную функции

    Решение. От нас требуется найти производную частного. Применяем формулу дифференцирования частного: производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя. Получаем:

    Производную сомножителей в числителе мы уже нашли в примере 2. Не забудем также, что произведение, являющееся вторым сомножителем в числителе в текущем примере берётся со знаком минус:

    Если Вы ищете решения таких задач, в которых надо найти производную функции, где сплошное нагромождение корней и степеней, как, например, , то добро пожаловать на занятие "Производная суммы дробей со степенями и корнями" .

    Если же Вам нужно узнать больше о производных синусов, косинусов, тангенсов и других тригонометрических функций, то есть, когда функция имеет вид вроде , то Вам на урок "Производные простых тригонометрических функций" .

    Пример 5. Найти производную функции

    Решение. В данной функции видим произведение, один из сомножителей которых - квадратный корень из независимой переменной, с производной которого мы ознакомились в таблице производных. По правилу дифференцирования произведения и табличному значению производной квадратного корня получаем:

    Пример 6. Найти производную функции

    Решение. В данной функции видим частное, делимое которого - квадратный корень из независимой переменной. По правилу дифференцирования частного, которое мы повторили и применили в примере 4, и табличному значению производной квадратного корня получаем:

    Чтобы избавиться от дроби в числителе, умножаем числитель и знаменатель на .

    Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

    Сбор и использование персональной информации

    Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

    От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

    Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

    Какую персональную информацию мы собираем:

    • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

    Как мы используем вашу персональную информацию:

    • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
    • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
    • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
    • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

    Раскрытие информации третьим лицам

    Мы не раскрываем полученную от Вас информацию третьим лицам.

    Исключения:

    • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
    • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

    Защита персональной информации

    Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

    Соблюдение вашей конфиденциальности на уровне компании

    Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

    Вычисление производной часто встречается в заданиях ЕГЭ. Данная страница содержит список формул для нахождения производных.

    Правила дифференцирования

    1. (k⋅ f(x))′=k⋅ f ′(x).
    2. (f(x)+g(x))′=f′(x)+g′(x).
    3. (f(x)⋅ g(x))′=f′(x)⋅ g(x)+f(x)⋅ g′(x).
    4. Производная сложной функции. Если y=F(u), а u=u(x), то функция y=f(x)=F(u(x)) называется сложной функцией от x. Равна y′(x)=Fu′⋅ ux′.
    5. Производная неявной функции. Функция y=f(x) называется неявной функцией, заданной соотношением F(x,y)=0, если F(x,f(x))≡0.
    6. Производная обратной функции. Если g(f(x))=x, то функция g(x) называется обратной функцией для функции y=f(x).
    7. Производная параметрически заданной функции. Пусть x и y заданы как функции от переменной t: x=x(t), y=y(t). Говорят, что y=y(x) параметрически заданная функция на промежутке x∈ (a;b), если на этом промежутке уравнение x=x(t) можно выразить в виде t=t(x) и определить функцию y=y(t(x))=y(x).
    8. Производная степенно-показательной функции. Находится путем логарифмирования по основанию натурального логарифма.
    Советуем сохранить ссылку, так как эта таблица может понадобиться еще много раз.