Войти
Русь. История России. Современная Россия
  • Что изучает социальная психология
  • Океан – наше будущее Роль Мирового океана в жизни Земли
  • Ковер из Байё — какие фильмы смотрели в Средние века
  • Библиотека: читающий малыш
  • Всадник без головы: главные герои, краткая характеристика
  • 3 стили речи. Стили текста. Жанры текста в русском языке. §2. Языковые признаки научного стиля речи
  • Основные свойства аминов. Предельные первичные амины. Химические свойства предельных аминов

    Основные свойства аминов. Предельные первичные амины. Химические свойства предельных аминов

    Подобно аммиаку, амины проявляют свойства оснований. Водные растворы низших аминов окрашивают красный лакмус в синий цвет, имеют щелочную среду.



    Причина основных свойств – свободная электронная пара атома азота, за счет которой присоединяется протон водорода. Основные свойства аминов обусловлены способностью присоединять протон водорода (Н +), и чем легче он присоединяется, тем ярче выражены основные свойства. Следовательно, амины – органические основания. По мере роста углеродного скелета растворимость в воде уменьшается, поэтому высшие амины не дают щелочной реакции, но сохраняют свойства оснований и с кислотами образуют соли. На характер основных свойств оказывает влияние природа радикала, с которым связана аминогруппа. Электронодонорные группы усиливают основные свойства, электроноакцепторные – уменьшают.

    Ароматические амины проявляют более слабые основные свойства, чем амины предельного ряда. Объясняется это влиянием бензольного ядра на аминогруппу. Свободная электронная пара атома азота вступает в сопряжение с п-электронами бензольного ядра, что приводит к уменьшению электронной плотности на атоме азота, тем самым к ослаблению способности присоединять Н + .



    Амины можно расположить в следующий ряд по убыванию основных свойств:

    (СН 3) 3 N > (СН 3) 2 NН> СН 3 NH 2 > NH 3 > C 6 H 5 NH 2 > (С 6 Н 5) 2 NН> (C 6 H 5) 3 N

    Образование солей. Подобно аммиаку, амины реагируют с кислотами, образуя соли:


    Соли аминов, в отличие от аминов, хорошо растворимы в воде, но не растворяются в органических растворителях. При действии на соли аминов щелочей происходит выделение аминов:


    Предельные амины могут осаждать нерастворимые гидроксиды металлов из растворов солей, например:

    Алкилирование аминов. Взаимодействие с галогенопроизводными. Из первичных аминов образуются вторичные амины, а из вторичных – третичные:





    Ацилирование – введение ацильной группы, при этом получаются амиды кислот:

    Горение. Амины сгорают в кислороде, образуя азот, СО 2 и Н 2 О , например.

    Амины - это органические соединения, в которых атом водорода (может и не один) замещен на углеводородный радикал. Все амины делят на:

    • первичные амины ;
    • вторичные амины ;
    • третичные амины .

    Есть еще аналоги солей аммония - четвертичные соли типа [R 4 N ] + Cl - .

    В зависимости от типа радикала амины могут быть:

    • алифатические амины;
    • ароматические (смешанные) амины.

    Алифатические предельные амины.

    Общая формула C n H 2 n +3 N .

    Строение аминов.

    Атом азота находится в sp 3 -гибридизации. На 4-ой негибридной орбитали находится неподеленная пара электронов, которая обуславливает основные свойства аминов:

    Элекронодонорные заместители повышают электронную плотность на атоме азота и усиливают основные свойства аминов, по этой причин вторичные амины являются более сильными основаниями, чем первичные, т.к. 2 радикала у атома азота создают большую электронную плотность, чем 1.

    В третичных атомах играет важную роль пространственный фактор: т.к. 3 радикала заслоняют неподеленную пару азота, к которой сложно «подступиться» другим реагентам, основность таких аминов меньше, чем первичных или вторичных.

    Изомерия аминов.

    Для аминов свойственна изомерия углеродного скелета, изомерия положения аминогруппы:

    Как называть амины?

    В названии обычно перечисляют углеводородные радикалы (в алфавитном порядке) и добавляют окончание -амин:

    Физические свойства аминов.

    Первые 3 амина - газы, средние члены алифатического ряда - жидкости, а высшие - твердые вещества. Температура кипения у аминов выше, чем у соответствующих углеводородов, т.к. в жидкой фазе в молекуле образуются водородные связи.

    Амины хорошо растворимы в воде, по мере роста углеводородного радикала растворимость падает.

    Получение аминов.

    1. Алкилирование аммиака (основной способ), который происходит при нагревании алкилгалогенида с аммиаком:

    Если алкилгалогенид в избытке, то первичный амин может вступать в реакцию алкилирования, превращаясь во вторичный или третичный амин:

    2. Восстановление нитросоединений:

    Используют сульфид аммония (реакция Зинина ), цинк или железо в кислой среде, алюминий в щелочной среде или водород в газовой фазе.

    3. Восстановление нитрилов. Используют LiAlH 4 :

    4. Ферментатичное декарбоксилирование аминокислот:

    Химические свойства аминов.

    Все амины - сильные основания, причем алифатические более сильные, чем аммиак.

    Водные растворы имеют щелочной характер.

    Амины - органические производные аммиака, в молекуле которого один, два или все три атома водорода замещены углеродным остатком.

    Обычно выделяют три типа аминов:

    Амины, в которых аминогруппа связана непо­средственно с ароматическим кольцом, называют­ся ароматическими аминами.

    Простейшим представителем этих соединений является аминобензол, или анилин:

    Основной отличительной чертой электронного строения аминов является наличие у атома азота, входящего в функциональную группу, неподеленной электронной пары. Это приводит к тому, что амины проявляют свойства оснований.

    Существуют ионы, которые являются продук­том формального замещения на углеводородный радикал всех атомов водорода в ионе аммония:

    Эти ионы входят в состав солей, похожих на соли аммония. Они называются четвертичными аммонийными солями.

    Изомерия и номенклатура аминов

    1. Для аминов характерна структурная изомерия:

    а) изомерия углеродного скелета:

    б) изомерия положения функциональной группы:

    2. Первичные, вторичные и третичные амины изомерны друг другу (межклассовая изомерия):

    Как видно из приведенных примеров, для то­го чтобы назвать амин, перечисляют заместители, связанные с атомом азота (по порядку старшин­ства), и добавляют суффикс —амин.

    Физические свойства аминов

    Простейшие амины (метиламин, диметиламин, триметиламин) - газообразные вещества. Остальные низшие амины - жидкости, которые хорошо рас­творяются в воде. Имеют характерный запах, напоми­нающий запах аммиака.

    Первичные и вторичные амины способны образовывать водородные связи. Это приводит к заметному повышению их температур кипения по сравнению с соединениями, имеющими ту же молекулярную массу, но не способными образовывать водородные связи.

    Анилин - маслянистая жидкость, ограниченно растворимая в воде, кипящая при температуре 184 °С.

    Химические свойства аминов

    Химические свойства аминов определяются в основном наличием у атома азота неподеленной электронной пары.

    Амины как основания. Атом азота аминогруппы, подобно атому азота в молекуле аммиака, за счет не­поделенной пары электронов может образовывать ковалентную связь по донорно-акцепторному меха­низму, выступая в роли донора. В связи с этим ами­ны, как и аммиак, способны присоединять катион водорода, т. е. выступать в роли основания:

    1. Реакция амионов с водой приводит к образо­ванию гидроксид-ионов:

    2. Реакция с кислотами . Аммиак, реагируя с кислотами, образует соли аммония. Амины так­же способны вступать в реакцию с кислотами:

    Основные свойства алифатических аминов вы­ражены сильнее, чем у аммиака. Это связано с на­личием одного и более донорных алкильных за­местителей, положительный индуктивный эффект которых повышает электронную плотность на атоме азота. Повышение электронной плотности превра­щает азот в более сильного донора пары электронов, что повышает его основные свойства:

    Горение амионов . Амины горят на воздухе с об­разованием углекислого газа, воды и азота:

    Применение аминов

    Амины широко применяются для получения лекарств, полимерных материалов. Анилин - важнейшее соединение данного класса, которое используют для производства анилиновых краси­телей, лекарств (сульфаниламидных препаратов), полимерных материалов (анилинформальдегидных смол).


    Амины - это производные аммиака (NH 3), в молекуле которого один, два или три атома водорода замещены уг­леводородными радикалами.

    По числу углеводородных радикалов, замещающих атомы водорода в молекуле NH 3 , все амины можно разделить на три типа:

    Группа - NH 2 называется аминогруппой. Существуют также амины, которые содержат две, три и более аминогрупп

    Номенклатура

    К названию органических остатков, связанных с азотом, добавляют слово «амин», при этом группы упоминают в алфавитном порядке: CH3NC3H - метилпропиламин, CH3N(C6H5)2 - метилдифениламин. Для высших аминов название составляется, взяв за основу углеводород, прибавлением приставки «амино», «диамино», «триамино», указывая числовой индекс атома углерода. Для некоторых аминов используются тривиальные названия: C6H5NH2 - анилин (систематическое название - фениламин).

    Для аминов возможна изомерия цепи, изомерия положения функциональной группы, изомерия между типами аминов

    Физические свойства

    Низшие предельные первичные амины - газообразные вещества, имеют запах аммиака, хорошо растворяются в воде. Амины с большей относительной молекулярной массой - жидкости или твердые вещества, растворимость их в воде с увеличением молекулярной массы уменьшается.

    Химические свойства

    По химическим свойствам амины похожи на аммиак.

    1. Взаимодействие с водой - образование гидроксидов замещенного аммония. Раствор аммиака в воде обладает слабыми щелочными (основными) свойствами. Причина основных свойств аммиака - наличие у атома азота неподеленной электронной пары, которая участвует в образовании донорно-акцепторной связи с ионом водорода. По этой же причине амины также являются слабыми основаниями. Амины - органические основания.

    2. Взаимодействие с кислотами - образование солей (реакции нейтрализации). Как основание аммиак с кислотами образует соли аммония. Аналогично при взаимодействии аминов с кислотами образуются соли замещенного аммония. Щелочи, как более сильные основания, вытесняют аммиак и амины из их солей.

    3. Горение аминов. Амины являются горючими веществами. Продуктами горения аминов, как и других азотсодержащих органических соединений, являются углекислый газ, вода и свободный азот.

    Алкилирование - введение алкильного заместителя в молекулу органического соединения. Типичными алкилирующими агентами являются алкилгалогениды, алкены, эпоксисоединения, спирты, реже альдегиды, кетоны, эфиры, сульфиды, диазоалканы. Катализаторами алкилирования являются минеральные кислоты, кислоты Льюиса а также цеолиты.

    Ацилирование. При нагревании с карбоновыми кислотами, их ангидридами, хлорангидридами или сложными эфирами первичные и вторичные амины ацилируются с образованием N-замещенных амидов, соединений с фрагментом -С(О)N<:

    Реакция с ангидридами протекает в мягких условиях. Ещё легче реагируют хлорангидриды, реакция проводится в присутствии основания, чтобы связать образующийся HCl.

    Первичные и вторичные амины взаимодействуют с азотистой кислотой различным образом. При помощи азотистой кислоты первичные, вторичные и третичные амины отличают друг от друга. Из первичных аминов образуются первичные спирты:

    C2H5NH2 + HNO2 → C2H5OH + N2 +H2O

    При этом выделяется газ (азот). Это признак того, что в колбе первичный амин.

    Вторичные амины образуют с азотистой кислотой желтые, трудно растворимые нитрозамины - соединения, содержащие фрагмент >N-N=O:

    (C2H5)2NH + HNO2 → (C2H5)2N-N=O + H2O

    Вторичные амины сложно не узнать, по лаборатории распространяется характерный запах нитрозодиметиламина.

    Третичные амины при обычной температуре в азотистой кислоте просто растворяются. При нагревании возможна реакция с отщеплением алкильных радикалов.

    Способы получения

    1.Взаимодействие спиртов с аммиаком при нагревании в присутствии Аl 2 0 3 в качестве катализатора.

    2.Взаимодействие алкилгалогенидов (галогеналканов) с аммиаком. Образовавшийся первичный амин может вступать в реакцию с избытком алкилгалогенида и аммиака, в результате чего образуется вторичный амин. Аналогично могут быть получены третичные амины

      Аминокислоты. Классификация, изомерия, номенклатура, получение. Физические и химические свойства. Амфотерные свойства, биполярная структура, изоэлектрическая точка. Полипептиды. Отдельные представители: глицин, аланин, цистеин, цистин, а-аминокапроновая кислота, лизин, глутаминовая кислота.

    Аминокислоты - это производные углеводородов, содержащие аминогруппы (-NH 2) и карбоксильные группы –СООН.

    Общая формула: (NH 2) f R(COOH) n где m и n чаще всего равны 1 или 2. Таким образом, аминокислоты являются соединениями со смешанными функциями.

    Классификация

    Изомерия

    Изомерия аминокислот, как и гидроксикислот, зависит от изомерии углеродной цепи и от положения аминогруппы по отношению к карбоксилу (a -, β - и γ- аминокислоты и т.д.). Кроме того, все природные аминокислоты, кроме аминоуксусной, содержат асимметрические атомы углерода, поэтому они имеют оптические изомеры (антиподы). Различают D- и L-ряды аминокислот. Следует отметить, что все аминокислоты, входящие в состав белков, относятся к L-ряду.

    Номенклатура

    Аминокислоты обычно имеют тривиальные названия (например, аминоуксусная кислота называется иначе гликоколом или иицином, а аминопропионовая кислота - аланином и т.д.). Название аминокислоты по систематической номенклатуре складывается из названия соответствующей карбоновой кислоты, производным которой она является, с добавлением в качестве приставки слова амино-. Положение аминогруппы в цепи указывается цифрами.

    Способы получения

    1.Взаимодействие α-галогенкарбоновых кислот с избытком аммиака. В ходе этих реакций происходит замещение атома галогена в галогенкарбоновых кислотах (об их получении см. § 10.4) на аминогруппу. Вьщеляющийся при этом хлороводород связывается избытком аммиака в хлорид аммония.

    2.Гидролиз белков. При гидролизе белков обычно образуются сложные смеси аминокислот, однако с помощью специальных методов из этих смесей можно выделять отдельные чистые аминокислоты.

    Физические свойства

    Аминокислоты - бесцветные кристаллические вещества, хорошо растворяются в воде, температура плавления 230-300°С. Многие α-аминокислоты имеют сладкий вкус.

    Химические свойства

    1. Взаимодействие с основаниями и с кислотами:

    а) как кислота (участвует карбоксильная группа).

    б) как основание (участвует аминогруппа).

    2. Взаимодействие внутри молекулы - образование внутренних солей:

    а) моноаминомонокарбоновые кислоты (нейтральные кислоты). Водные растворы моноаминомонокарбоновых кислот нейтральны (рН = 7);

    б) моноаминодикарбоновые кислоты (кислые аминокислоты). Водные растворы моноаминодикарбоновых кислот имеют рН < 7 (кислая среда), так как в результате образования внутренних солей этих кислот в растворе появляется избыток ионов водорода Н + ;

    в) диаминомонокарбоновые кислоты (основные аминокислоты). Водные растворы диаминомонокарбоновых кислот имеют рН > 7 (щелочная среда), так как в результате образования внутренних солей этих кислот в растворе появляется избыток гидроксид-ионов ОН - .

    3. Взаимодействие аминокислот друг с другом - образование пептидов.

    4. Взаимодействуют со спиртами с образованием сложных эфиров.

    Изоэлектрическая точка аминокислот, не содержащих дополнительных NH2- или СООН-групп, представляет собой среднее арифметическое между двумя значениями рК": соответственно для аланина.

    Изоэлектрическая точка ряда других аминокислот, содержащих дополнительные кислотные или основные группы (аспарагиновая и глутаминовая кислоты, лизин, аргинин, тирозин и др.), зависит, кроме того, от кислотности или основности радикалов этих аминокислот. Для лизина, например, рI должна вычисляться из полусуммы значений рК" для α- и ε-NН2-групп. Таким образом, в интервале рН от 4,0 до 9,0 почти все аминокислоты существуют преимущественно в форме цвиттерионов с протонированной аминогруппой и диссоциированной карбоксильной группой.

    Полипептиды содержат более десяти аминокислотных остатков.

    Глицин (аминоуксусная кислота, аминоэтановая кислота) - простейшая алифатическая аминокислота, единственная аминокислота, не имеющая оптических изомеров. Эмпирическая формула C2H5NO2

    Аланин (аминопропановая кислота) - алифатическая аминокислота. α-аланин входит в состав многих белков, β-аланин - в состав ряда биологически активных соединений. Химическая формула NH2 -CH -CH3 -COOH. Аланин легко превращается в печени в глюкозу и наоборот. Этот процесс носит название глюкозо-аланинового цикла и является одним из основных путей глюконеогенеза в печени.

    Цистеин (α-амино-β-тиопропионовая кислота; 2-амино-3-сульфанилпропановая кислота) - алифатическая серосодержащая аминокислота. Оптически активна, существует в виде L- и D- изомеров. L-Цистеин входит в состав белков и пептидов, играет важную роль в процессах формирования тканей кожи. Имеет значение для дезинтоксикационных процессов. Эмпирическая формула C3H7NO2S.

    Цисти́н (хим.) (3,3"-дитио-бис-2-аминопропионовая к-та, дицистеин) - алифатическая серосодержащая аминокислота, бесцветные кристаллы, растворимые в воде.

    Цистин - некодируемая аминокислота, представляющая собой продукт окислительной димеризации цистеина, в ходе которой две тиольные группы цистеина образуют дисульфидную связь цистина. Цистин содержит две аминогруппы и две карбоксильных группы и относится к двухосновным диаминокислотам. Эмпирическая формула C6H12N2O4S2

    В организме находятся в основном в составе белков.

    Аминокапроновая кислота (6-аминогексановая кислота или ε-аминокапроновая кислота) - лекарственное гемостатическое средство, тормозит превращение профибринолизина в фибринолизин. Брутто-

    формула C6H13NO2.

    Лизин (2,6-диаминогексановая кислота) - алифатическая аминокислота с выраженными свойствами основания; незаменимая аминокислота. Химическая формула: C6H14N2O2

    Лизин входит в состав белков. Лизин - это незаменимая аминокислота, входящая в состав практически любых белков, необходима для роста, восстановления тканей, производства антител, гормонов, ферментов, альбуминов.

    Глутаминовая кислота (2-аминопентандиовая кислота) - алифатическая аминокислота. В живых организмах глутаминовая кислота в виде аниона глутамата присутствуют в составе белков, ряда низкомолекулярных веществ и в свободном виде. Глутаминовая кислота играет важную роль в азотистом обмене. Химическая формула C5H9N1O4

    Глутаминовая кислота также является нейромедиаторной аминокислотой, одним из важных представителей класса «возбуждающих аминокислот». Связывание глутамата со специфическими рецепторами нейронов приводит к возбуждению последних.

      Простые и сложные белки. Пептидная связь. Понятие о первичной, вторичной, третичной и четвертичной структуре белковой молекулы. Типы связей, определяющих пространственное строение молекулы белка (водородные, дисульфидные, ионные, гидрофобные взаимодействия). Физические и химические свойства белков (реакции осаждения, денатурации, цветные реакции). Изоэлектрическая точка. Значение белков.

    Белки - это природные высокомолекулярные соединения (биополимеры), структурную основу которых составляют полипептидные цепи, построенные из остатков α-аминокислот.

    Простые белки (протеины) - высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа-аминокислот.

    Сложные белки (протеиды) - двухкомпонентные белки, в которых помимо пептидных цепей (простого белка) содержится компонент неаминокислотной природы - простетическая группа.

    Пептидная связь - вид амидной связи, возникающей при образовании белков и пептидов в результате взаимодействия α-аминогруппы (-NH2) одной аминокислоты с α-карбоксильной группой (-СООН) другой аминокислоты.

    Первичная структура - последовательность аминокислот в полипептидной цепи. Важными особенностями первичной структуры являются консервативные мотивы - сочетания аминокислот, играющих ключевую роль в функциях белка. Консервативные мотивы сохраняются в процессе эволюции видов, по ним часто удаётся предсказать функцию неизвестного белка.

    Вторичная структура - локальное упорядочивание фрагмента полипептидной цепи, стабилизированное водородными связями.

    Третичная структура - пространственное строение полипептидной цепи (набор пространственных координат составляющих белок атомов). Структурно состоит из элементов вторичной структуры, стабилизированных различными типами взаимодействий, в которых гидрофобные взаимодействия играют важнейшую роль. В стабилизации третичной структуры принимают участие:

    ковалентные связи (между двумя остатками цистеина - дисульфидные мостики);

    ионные связи между противоположно заряженными боковыми группами аминокислотных остатков;

    водородные связи;

    гидрофильно-гидрофобные взаимодействия. При взаимодействии с окружающими молекулами воды белковая молекула «стремится» свернуться так, чтобы неполярные боковые группы аминокислот оказались изолированы от водного раствора; на поверхности молекулы оказываются полярные гидрофильные боковые группы.

    Четвертичная структура (или субъединичная, доменная) - взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса. Белковые молекулы, входящие в состав белка с четвертичной структурой, образуются на рибосомах по отдельности и лишь после окончания синтеза образуют общую надмолекулярную структуру. В состав белка с четвертичной структурой могут входить как идентичные, так и различающиеся полипептидные цепочки. В стабилизации четвертичной структуры принимают участие те же типы взаимодействий, что и в стабилизации третичной. Надмолекулярные белковые комплексы могут состоять из десятков молекул.

    Физические свойства

    Свойства белков так же разнообразны, как и функции, которые они выполняют. Одни белки растворяются в воде,-образуя, как правило, коллоидные растворы (например, белок яйца); другие растворяются в разбавленных растворах солей; третьи нерастворимы (например, белки покровных тканей).

    Химические свойства

    В радикалах аминокислотных остатков белки содержат различные функциональные группы, которые способны вступать во многие реакции. Белки вступают в реакции окисления-восстановления, этерификации, алкилирования, нитрования, могут образовывать соли как с кислотами, так и с основаниями (белки амфотерны).

    Например, альбумин - яичный белок - при температуре 60-70° осаждается из раствора (свертывается), теряя способность растворяться в воде.