Войти
Русь. История России. Современная Россия
  • Что изучает социальная психология
  • Океан – наше будущее Роль Мирового океана в жизни Земли
  • Ковер из Байё — какие фильмы смотрели в Средние века
  • Библиотека: читающий малыш
  • Всадник без головы: главные герои, краткая характеристика
  • 3 стили речи. Стили текста. Жанры текста в русском языке. §2. Языковые признаки научного стиля речи
  • Коэффициент трения и ситуации, в которых он возникает. Определение коэффициента сухого трения Коэффициент трения качения не зависит от площади

    Коэффициент трения и ситуации, в которых он возникает. Определение коэффициента сухого трения Коэффициент трения качения не зависит от площади

    Цель работы :познакомиться с явлением трения качения, определить коэффициент трения качения четырехколесной тележки..

    Оборудование : тележка как модель вагона, горизонтальная рельсовая колея с набором фотоэлементов, секундомер, набор грузов.

    ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ

    Сила трения качения – это касательная к поверхности контакта сила сопротивления движению, возникающая при качении цилиндрических тел.

    При качении колеса по рельсу происходит деформация как колеса, так и рельса. Вследствие неидеальной упругости материала в зоне контакта происходят процессы пластической деформации микробугорков, поверхностных слоев колеса и рельса. Из-за остаточной деформации уровень рельса за колесом оказывается ниже, чем перед колесом и колесо при движении постоянно закатывается на бугорок. В наружной части зоны контакта происходит частичное проскальзывание колеса по рельсу. Во всех этих процессах совершается работа силой трения качения. Работа этой силы приводит к рассеянию механической энергии, переходу ее в теплоту, поэтому сила трения качения является диссипативной силой.

    В центральной части зоны контакта возникает еще одна касательная сила – это сила трения покоя или сила сцепления материала колеса и рельса. Для ведущего колеса локомотива сила сцепления является силой тяги, а при торможении колодочным тормозом – силой торможения. Так как в центре зоны контакта перемещения колеса относительно рельса отсутствует, то работа силой сцепления не совершается.

    Распределение давления на колесо со стороны рельса оказывается несимметричным. Спереди давление больше, а сзади меньше (рис.1). Поэтому точка приложения равнодействующей силы на колесо смещена вперед на некоторое небольшое расстояние b относительно оси. Представим силу воздействия рельса на колесо в виде двух составляющих. Одна направлена по касательной к зоне контакта, она является силой сцепления F сцепл . Другая составляющая Q направлена по нормали к поверхности контакта и проходит через ось колеса.

    Разложим, в свою очередь, силу нормального давления Q на две составляющие: силу N , которая перпендикулярна рельсу и компенсирует силу тяжести, и силу F кач , которая направлена вдоль рельса против движения. Эта сила препятствует движению колеса и является силой трения качения. Сила давления Q вращающего момента сил не создает. Поэтому моменты составляющих ее сил относительно оси колеса должны компенсировать друг друга: . Откуда . Сила трения качения пропорциональна силе N , действующей на колесо перпендикулярно рельсу:

    . (1)

    Здесь коэффициент трения качения. Он зависит от упругости материала рельса и колеса, состояния поверхности, размеров колеса. Как видно, чем больше колесо, тем сила трения качения меньше. Если бы за колесом форма рельса восстанавливалась, то эпюра давления была бы симметрична, и трение качения отсутствовало. При качении стального колеса по стальному рельсу коэффициент трения качения достаточно мал: 0,003–0,005, в сотни раз меньше коэффициента трения скольжения. Поэтому катить легче, чем тащить.

    Экспериментальное определение коэффициента трения качения производится на лабораторной установке. Пусть тележка, являющаяся моделью вагона, катится по горизонтальным рельсам. На нее со стороны рельсов действуют горизонтальные силы трения качения и сцепления (рис. 2). Запишем уравнение второго закона Ньютона для замедленного движения тележки массой m в проекции на направление ускорения:

    . (2)

    Поскольку масса колес составляет значительную часть от массы тележки, то нельзя не учесть вращательного движения колес. Представим качение колес как сумму двух движений: поступательного движения вместе с тележкой и вращательного движения относительно осей колесных пар. Поступательное движение колес объединим с поступательным движением тележки с их общей массой m в уравнении (1). Вращательное движение колес происходит под действием только момента сил сцепления F сц R . Уравнение основного закона динамики вращательного движения (произведение момента инерции всех колес на угловое ускорение равно моменту силы) имеет вид

    . (3)

    При отсутствии проскальзывания колеса относительно рельса скорость точки контакта равна нулю. Значит, скорости поступательного и вращательного движений равны и противоположны: . Если это равенство продифференцировать, то получим соотношение между поступательным ускорением тележки и угловым ускорениями колеса: . Тогда уравнение (3) примет вид . Сложим это уравнение с уравнением (2) для исключения неизвестной силы сцепления. В результате получим

    . (4)

    Полученное уравнение совпадает с уравнением второго закона Ньютона для поступательного движения тележки с эффективной массой: , в которой уже учтен вклад инертности вращения колес в инертность тележки. В технической литературе уравнение вращательного движения колес (3) не применяют, а учитывают вращение колес введением эффективной массы. Например, для груженого вагона коэффициент инертности γ равен 1,05, а для порожнего вагона влияние инертности колес больше: γ = 1,10.

    Подставив силу трения качения в уравнение (4), получим для коэффициента трения качения расчетную формулу

    . (5)



    Для определения коэффициента трения качения по формуле (5) следует экспериментально измерить ускорение тележки. Для этого толкнем тележку с некоторой скоростью V 0 по горизонтальным рельсам. Уравнение кинематики равнозамедленного движения имеет вид .

    Путь S и время движения t можно измерить, но неизвестна начальная скорость движения V 0 . Однако установка (рис. 3) имеет семь секундомеров, измеряющих время движения от стартового фотоэлемента до следующих семи фотоэлементов. Это позволяет либо составить систему семи уравнений и исключить из них начальную скорость, либо решить эти уравнения графически. Для графического решения перепишем уравнение равнозамедленного движения, поделив его на время: .

    Средняя скорость движения до каждого фотоэлемента линейно зависит от времени движения до фотоэлементов. Поэтому график зависимости <V> (t ) является прямой линией с угловым коэффициентом, равным половине ускорения (рис.4)

    . (6)

    Момент инерции четырех колес тележки, которые имеют форму цилиндров радиуса R при общей их массе m кол, можно определить по формуле . Тогда поправка на инертность вращения колес примет вид .

    ВЫПОЛНЕНИЕ РАБОТЫ

    1. Определить взвешиванием массу тележки вместе с некоторым грузом. Измерить радиус колес по поверхности катания. Записать результаты измерений в табл. 1.

    Таблица 1 Таблица 2

    S, м t, с , м/с
    0,070
    0,140
    0,210
    0,280
    0,350
    0,420
    0,490

    2. Проверить горизонтальность рельсов. Поставить тележку у начала рельсов так, чтобы стержень тележки был перед отверстиями стартового фотоэлемента. Включить блок питания в сеть 220 В.

    3. Толкнуть тележку вдоль рельсов так, чтобы она доехала до ловушки и упала в нее. Каждый секундомер покажет время движения тележки от стартового фотоэлемента до его фотоэлемента. Повторить опыт несколько раз. Записать показания семи секундомеров в одном из опытов в табл. 2.

    4. Произвести расчеты. Определить среднюю скорость движения тележки на пути от старта до каждого фотоэлемента

    5. Построить график зависимости средней скорости движения до каждого фотоэлемента от времени движения. Размер графика не менее половины страницы. На осях координат указать равномерный масштаб. Около точек провести прямую линию.

    6. Определить среднее значение ускорения. Для этого на экспериментальной линии как на гипотенузе построить прямоугольный треугольник. По формуле (6) найти среднее значение ускорения.

    7. Рассчитать поправку на инертность вращения колес, считая их однородными дисками . Определить по формуле (5) среднее значение коэффициента трения качения <μ>.

    8. Оценить погрешность измерения графическим способом

    . (7)

    Записать результат μ = <μ>± δμ, Р = 90%.

    Сделать выводы.

    КОНТРОЛЬНЫЕ ВОПРОСЫ

    1. Объяснить причину возникновения силы трения качения. Какие факторы влияют на величину силы трения качения?

    2. Записать закон для силы трения качения. От чего зависит коэффициент трения качения?

    3. Записать уравнения динамики поступательного движения тележки по горизонтальным рельсам и вращательного движения колес. Получить уравнение движения тележки с эффективной массой.

    4. Вывести формулу для определения коэффициента трения качения.

    5. Объяснить суть графического метода определения ускорения тележки при качении по рельсам. Вывести формулу ускорения.

    6. Объяснить влияние вращения колес на инертность тележки.


    Работа 17-б


    Похожая информация.


    КОЭФФИЦИЕНТ ТРЕНИЯ

    КОЭФФИЦИЕНТ ТРЕНИЯ , количественная характеристика силы, необходимой для скольжения или движения одного материала по поверхности другого. Если обозначить вес предмета как N, а коэффициент ТРЕНИЯ - m, то сила (F), необходимая для движения предмета по ровной поверхности без ускорения, равна F = mN. Коэффициент трения покоя определяет силу, необходимую для начала движения; коэффициент кинетического трения (трения движения) определяет (меньшую) силу, необходимую для поддержания движения.


    Научно-технический энциклопедический словарь .

    Смотреть что такое "КОЭФФИЦИЕНТ ТРЕНИЯ" в других словарях:

      коэффициент трения - Отношение силы трения двух тел к нормальной силе, прижимающей эти тела друг к другу. [ГОСТ 27674 88] Тематики трение, изнашивание и смазка EN coefficient of friction …

      коэффициент трения - 3.1 коэффициент трения: Отношение силы трения двух тел к нормальной силе, прижимающей эти тела друг к другу. Источник: СТ ЦКБА 057 2008: Арматура трубопроводная. Коэффициенты трения в узлах арматуры 3.1 коэффициент трения: Отношение силы трения… … Словарь-справочник терминов нормативно-технической документации

      Трение процесс взаимодействия твёрдых тел при их относительном движении (смещении) либо при движении твердого тела в жидкой или газообразной среде. По другому называется фрикционным взаимодействием (англ. friction). Изучением процессов трения… … Википедия

      Coefficient of friction Коэффициент трения. Безразмерное отношение силы трения (F) между двумя телами к нормальной силе (N) сжимающей эти тела: (или f = F/N). (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО… … Словарь металлургических терминов

      коэффициент трения - trinties faktorius statusas T sritis Standartizacija ir metrologija apibrėžtis Trinties jėgos ir statmenai kūno judėjimo arba galimo judėjimo kryčiai veikiančios jėgos dalmuo. atitikmenys: angl. friction coefficient; friction factor; frictional… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

      коэффициент трения - trinties faktorius statusas T sritis fizika atitikmenys: angl. friction coefficient; friction factor; frictional factor vok. Reibungsfaktor, m; Reibungskoeffizient, m; Reibungszahl, f rus. коэффициент трения, m pranc. coefficient de friction, m;… … Fizikos terminų žodynas

      коэффициент трения - отношение силы трения к силе нормального давления, например, при прокатке, волочении, прессовании и других видах обработки металлов; обозначется f и изменяется в достаточно широких пределах. Так, при прокатке f= 0,03 0,5. В… … Энциклопедический словарь по металлургии

      коэффициент трения - coefficient of (static) friction Отношение предельной силы трения к нормальной реакции. Шифр IFToMM: 3.5.50 Раздел: ДИНАМИКА МЕХАНИЗМОВ … Теория механизмов и машин

      коэффициент трения (металлургия) - коэффициент трения Безразмерное отношение силы трения (F) между двумя телами к нормальной силе (N) сжимающей эти тела: (или f = F/N). Тематики металлургия в целом EN foefficient of friction … Справочник технического переводчика

      коэффициент трения потока - — Тематики нефтегазовая промышленность EN flow friction characteristics … Справочник технического переводчика

    Коэффициент трения — это основная характеристика трения как явления. Он определяется видом и состоянием поверхностей трущихся тел.

    ОПРЕДЕЛЕНИЕ

    Коэффициентом трения называют коэффициент пропорциональности, связывающий силу трения () и силу нормального давления (N) тела на опору. Чаще всего коэффициент трения обозначают буквой . И так, коэффициент трения входит в закон Кулона — Амонтона:

    Данный коэффициент трения не зависит от площадей, соприкасающихся поверхностей.

    В данном случае речь идет о коэффициенте трения скольжения, который зависит от совокупных свойств трущихся поверхностей и является безразмерной величиной. Коэффициент трения зависит от: качества обработки поверхностей, трущихся тел, присутствия на них грязи, скорости движения тел друг относительно друга и т.д. Коэффициент трения определяют эмпирически (опытным путем).

    Коэффициент трения, который соответствует максимальной силе трения покоя в большинстве случаев больше, чем коэффициент трения движения.

    Для большего числа пар материалов величина коэффициента трения не больше единицы и лежит в пределах

    Угол трения

    Иногда вместо коэффициента трения применяют угол трения (), который связан с коэффициентом соотношением:

    Так, угол трения соответствует минимальному углу наклона плоскости по отношению к горизонту, при котором тело, лежащее на этой плоскости, начнет скользить вниз под воздействием силы тяжести. При этом выполняется равенство:

    Истинный коэффициент трения

    Закон трения, который учитывает влияние сил притяжения между молекулами, трущихся поверхностей записываю следующим образом:

    где — называют истинным коэффициентом трения, — добавочное давление, которое вызывается силами межмолекулярного притяжения, S — общая площадь непосредственного контакта трущихся тел.

    Коэффициент трения качения

    Коэффициент трения качения (k) можно определить как отношение момента силы трения качения () к силе с которой тело прижимается к опоре (N):

    Отметим, что коэффициент трения качения обозначают чаще буквой . Этот коэффициент, в отличие от выше перечисленных коэффициентов трения, имеет размерность длины. То есть в системе СИ он измеряется в метрах.

    Коэффициент трения качения много меньше, чем коэффициент трения скольжения.

    Примеры решения задач

    ПРИМЕР 1

    Задание Веревка лежит частично на столе, часть ее свешивается со стола. Если треть длины веревки свесится со стола, то она начинает скользить. Каков коэффициент трения веревки о стол?
    Решение Веревка скользит со стола под действием силы тяжести. Обозначим силу тяжести, которая действует на единицу длины веревки как . В таком случае в момент начала скольжения сила тяжести, которая действует на свешивающуюся часть веревки, равна:

    До начала скольжения эта сила уравновешивается силой трения, которая действует на часть веревки, которая лежит на столе:

    Так как силы уравновешиваются, то можно записать ():

    Ответ

    ПРИМЕР 2

    Задание Каков коэффициент трения тела о плоскость (), если зависимость пути, которое оно проходит задано уравнением: где Плоскость составляет угол с горизонтом.
    Решение Запишем второй закон Ньютона для сил, приложенных к движущемуся телу:

    Силой трения называют силу, возникающую при соприкосновении двух тел и препятствующую их относительному перемещению. Она приложена к телам вдоль поверхности соприкосновения. Трение, возникающее между поверхностями различных тел, называют внешним трением. Если трение проявляется между частями одного и того же тела, то оно называется внутренним трением.

    Трение между поверхностями двух соприкасающихся твердых тел при отсутствии между ними жидкой или газообразной прослойки называется сухим трением.

    Трение между поверхностью твердого тела и окружающей его жидкой или газообразной средой, в которой тело движется, называется вязким трением.

    Различают трение покоя, трение скольжения и трение качения.

    Сила трения покоя возникает между неподвижными твердыми телами, когда есть силы, действующие в направлении возможного движения тела.

    Сила трения покоя всегда равна по модулю и направлена противоположно силе, параллельной поверхности соприкосновения и стремящейся при вести это тело в движение. Увеличение этой приложенной к телу внешней силы приводит к возрастанию и силы трения покоя. Сила трения покоя направлена в сторону, противоположную возможному перемещению тела (рис. 1 а, б). . Максимальная сила трения покоя пропорциональна модулю силы нормального давления , производимого телом на опору:

    Так как по третьему закону Ньютона . Здесь - коэффициент трения покоя, зависящий от материала и состояния трущихся поверхностей. Сила трения покоя препятствует началу движения. Но бывают случаи, когда сила трения покоя служит причиной возникновения движения тела. Например, ходьба человека. При ходьбе сила трения покоя, действующая на подошву, сообщает нам ускорение. Подошва не скользит назад, и, значит, трение между ней и дорогой - это трение покоя.

    Рассмотрим брусок, лежащий на тележке (рис. 2). На него действует сила , стремящаяся сдвинуть его с места. В противоположном направлении на брусок со стороны тележки действует сила трения покоя . На тележку со стороны бруска действует такая же по модулю и противоположная по направлению сила , приводящая к движению тележки вправо. Сила трения покоя играет принципиальную роль в движении машин. Шины ведущих колес автомобилей как бы отталкиваются от дороги, и при отсутствии пробуксовки толкающая автомобиль сила - это сила трения покоя.

    Сила трения скольжения возникает при соприкосновении движущихся относительно друг друга тел и затрудняет их движение. Сила трения скольжения направлена вдоль поверхности соприкосновения в сторону, противоположную скорости движения. Сила трения скольжения прямо пропорциональна силе нормального давления:

    где - коэффициент трения скольжения, зависящий от качества обработки поверхностей и их материала.

    для данных тел.

    ( несколько больше ) - сдвинуть тело с места труднее, чем продолжать его начавшееся скольжение).

    Сила трения не зависит от площади соприкасающихся поверхностей тел и их положения относительно друг друга, а также от модуля скорости при небольших скоростях, но зависит от направления скорости: при изменении направления скорости изменяется и направление (рис. 3). Действие сил трения скольжения сопровождается превращением механической энергии во внутреннюю.

    Существование сил трения объясняется проявлением сил электромагнитного взаимодействия. Силы трения покоя вызываются в основном упругими деформациями микровыступов на поверхности трущихся тел, силы трения скольжения возникают в результате пластических деформаций микровыступов и их частичного разрушения, а также сил межмолекулярного взаимодействия в области контактов.

    Явление трения играет огромную роль в современной технике. В одних случаях с ним борются и стремятся уменьшить, в других же, наоборот, применяют разные методы с целью увеличить силу трения. В данной статье подробнее рассмотрим вопрос, от чего зависит коэффициент трения.

    Сила трения и ее виды

    Прежде чем перейти к ответу на вопрос, от чего зависит коэффициент трения, следует рассмотреть собственно само явление и его виды.

    Каждый человек интуитивно понимает, что любой вид трения предполагает наличие физического контакта минимум двух поверхностей. Это могут быть твердые, жидкие и газообразные среды.

    Трение между твердыми телами делится на три вида. Самой большой силой обладает так называемое трение покоя. Многие замечали, что для смещения шкафа или короба, стоящего на полу, необходимо приложить некоторую силу. Величина, которая препятствует этому смещению, называется трением покоя.

    Следующий вид - скольжения. По абсолютной величине оно, как правило, на 10-30 % меньше проявляет себя, когда два тела скользят друг по другу. Например, движение конькобежца или лыжника возможны благодаря небольшому значению трения скольжения. В то же время скользить в ботинках по асфальту нельзя из-за значительной силы трения.

    Трение качения действует, когда тело с круглой поверхностью катится по некоторой плоскости. Например, движение шарика или ролика в подшипнике или колеса по дороге. В ряде случаев величина трения качения на один-два порядка меньше, чем трения скольжения.

    Любые перемещения в жидкостях и газах также сопровождаются появлением трения. В отличие от предыдущих видов, трение в текучих субстанциях зависит от скорости перемещения объекта в них.

    Важно понимать, что какой бы вид трения ни рассматривался, соответствующая сила всегда препятствует механическому движению.

    Трение покоя и коэффициент µ1

    Чтобы понять, от чего зависит коэффициент трения, следует сначала дать ему определение. Начнем с трения покоя. Соответствующая сила математически рассчитывается по следующей формуле:

    Где N - на которой находится тело, µ 1 - коэффициент трения покоя. От чего зависит последняя величина:

    • Во-первых, от материалов трущихся поверхностей. Очевидно, что µ 1 будет гораздо меньше для пары дерево-лед, чем для пары дерево-дерево.
    • Во-вторых, от качества обработки поверхностей. Так, если шероховатость (величина микроскопических впадин и пиков и их количество на поверхностях) будет значительной, то коэффициент µ 1 тоже будет большим.
    • В-третьих, µ 1 зависит от температуры тел. В некоторых случаях изменение температуры может существенно поменять характер самого трения. Так, понижение температуры льда приводит к тому, что он перестает скользить, то есть µ 1 возрастает.

    Заметим, что от площади контакта двух тел µ 1 не зависит.

    Трение скольжения и коэффициент µ2

    По своей физической природе трение скольжения существенно не отличается от трения покоя. Формулы, по которым рассчитываются силы для этих видов явления, также имеют одинаковую форму. Для силы скольжения имеем:

    Единственным отличием в формулах является то, что в последнем случае используется величина µ 2 - коэффициент трения скольжения. От чего зависит величина? Кратко говоря, µ 2 определяется теми же факторами, что и µ 1 . Поскольку происходит процесс скольжения, то пики и впадины на поверхностях не успевают перейти в плотный механический контакт. Также не успевают образоваться слабые межмолекулярные взаимодействия. Все это обуславливает тот факт, что µ 2 < µ 1 .

    Как в случае так и в случае скольжения главной причиной их возникновения является поверхностная шероховатость. Если от нее каким-либо образом избавиться, то можно значительно уменьшить силы F 1 и F 2 . Для этой цели в настоящее время создано большое количество смазочных материалов. Слой смазки приводит к пространственному разделению контактов твердых поверхностей, поэтому силы трения значительно уменьшаются.

    Отметим, что коэффициент µ 2 не зависит от площади контакта и от скорости скольжения (при больших скоростях он начинает плавно уменьшаться).

    и коэффициент CR

    Сразу следует сказать, что причина появления трения качения является совершенно иной, чем для предыдущих рассмотренных видов. Трение качения возникает за счет гистерезиса упругой деформации катящегося тела. Если бы этой деформации не было, то трение качения было бы равно почти нулю.

    Сила трения качения F 3 определяется так:

    Здесь C R - качения трения коэффициент. От чего зависит C R ? Во-первых, он обратно пропорционален радиусу катящегося тела. Во-вторых, он сильно зависит от твердости контактирующих объектов, чем выше эта твердость, тем меньше C R .

    Значения коэффициентов C R так же, как значения µ 1 и µ 2 , приведены в специальных таблицах.

    Коэффициент трения в жидкостях и газах

    Трение в текучих субстанциях имеет более простую природу, чем то же явление между твердыми телами. Она заключается в механическом взаимодействии с частицами субстанции при движении тела в ней.

    Тем не менее, математическое описание энергетических потерь, связанных с этим трением, является достаточно сложным. Соответствующее уравнение называется формулой Дарси-Вейсбаха. Здесь мы не будем приводить ее, а лишь скажем, что для оценки отмеченных потерь использует понятие гидравлического коэффициента трения. От чего зависит его значение? Этот коэффициент определяется режимом течения (ламинарный или турбулентный). Режим же зависит от скорости движения, вязкости и плотности текучей субстанции, а также от диаметра трубы. Все эти параметры позволяют рассчитать так называемое число Рейнольдса, которое однозначно определяет значение коэффициента трения.