Войти
Русь. История России. Современная Россия
  • Что изучает социальная психология
  • Океан – наше будущее Роль Мирового океана в жизни Земли
  • Ковер из Байё — какие фильмы смотрели в Средние века
  • Библиотека: читающий малыш
  • Всадник без головы: главные герои, краткая характеристика
  • 3 стили речи. Стили текста. Жанры текста в русском языке. §2. Языковые признаки научного стиля речи
  • Эффективная масса электрона в кристалле. Эффективная масса электрона в кристалле и ее физический смысл Электроны в периодическом поле кристалла

    Эффективная масса электрона в кристалле. Эффективная масса электрона в кристалле и ее физический смысл Электроны в периодическом поле кристалла

    Электрон проводимости, электрон металлов и полупроводников, энергия которого находится в частично заполненной энергетической зоне (зоне проводимости, см. Твёрдое тело). В полупроводниках при…

    Твёрдое тело, одно из четырёх агрегатных состояний вещества, отличающееся от др. агрегатных состояний (жидкости, газов, плазмы) стабильностью формы и характером теплового движения атомов, совершающих…

    Зонная теория твёрдого тела, раздел квантовой механики, рассматривающий движение электронов в твёрдом теле. Свободные электроны могут иметь любую энергию - их энергетический спектр непрерывен…

    Гальваномагнитные явления, совокупность явлений, связанных с действием магнитного поля на электрические (гальванические) свойства твёрдых проводников (металлов и полупроводников), по которым течёт ток…

    Циклотронный резонанс, избирательное поглощение электромагнитной энергии носителями заряда в проводниках, помещенных в магнитное поле при частотах, равных или кратных их циклотронной частоте. При Ц. р…

    Теплоёмкость, количество теплоты, поглощаемой телом при нагревании на 1 градус; точнее - отношение количества теплоты, поглощаемой телом при бесконечно малом изменении его температуры, к этому…

    Квантовая жидкость, жидкость, свойства которой определяются квантовыми эффектами. Примером К. ж. является жидкий гелий при температуре, близкой к абсолютному нулю. Квантовые эффекты начинают…

    Фермион, ферми-частица, частица или элементарное возбуждение квантовой системы многих частиц - квазичастица, обладающая полуцелым спином. К Ф. относятся все барионы (протон, нейтрон, гипероны и др.) и…

    Ферми энергия, ферми-уровень, значение энергии, ниже которой все энергетические состояния частиц вырожденного газа, подчиняющихся статистике ферми - Дирака (фермионов), при абсолютном нуле температуры…

    Гелий (лат. Helium), символ Не, химический элемент VIII группы периодической системы, относится к инертным газам; порядковый номер 2, атомная масса 4,0026; газ без цвета и запаха. Природный Г. состоит…

    Фонон (от греч. phone - звук), квант колебательного движения атомов кристалла. Колебания атомов кристалла благодаря взаимодействию между ними распространяются по кристаллу в виде волн, каждую из…

    Экситон (от лат. excito - возбуждаю), квазичастица, представляющая собой электронное возбуждение в диэлектрике или полупроводнике, мигрирующее по кристаллу и не связанное с переносом электрического…

    Квазичастицы (от квази... и частицы), одно из фундаментальных понятий теории конденсированного состояния вещества, в частности теории твёрдого тела. Теоретическое описание и объяснение свойств…


    Эффективная масса, величина, имеющая размерность массы, характеризующая динамические свойства квазичастиц . Например , движение электрона проводимости в кристалле под действием внешней силы F и сил со стороны кристаллической решётки (см. Твёрдое тело , Зонная теория)может быть описано как движение свободного электрона, на который действует только сила F (закон Ньютона), но с Э. м. m* , отличной от массы m свободного электрона. Это отличие отражает взаимодействие электрона проводимости с решёткой. Э. м. определяется соотношением:

    где x - энергия, р - квазиимпульс электрона проводимости. Если зависимость x(р ) (закон дисперсии) анизотропна, то Э. м. представляет собой тензор (тензор обратной массы):

    Это означает, что ускорение электрона в решётке в общем случае направлено не параллельно внешней силе F . Оно может быть направлено даже антипараллельно F , что соответствует отрицательному значению Э. м. Свойства электронов с отрицательной Э. м. столь отличаются от свойств обычных частиц, что оказалось удобнее рассматривать положительно заряженные дырки с положительной Э. м.

    В физике твёрдого тела, эффективной массой частицы называется динамическая масса, которая появляется при движении частицы в периодическом потенциале кристалла. Можно показать, что электроны и дырки в кристалле реагируют на электрическое поле так, как если бы они свободно двигались в вакууме, но с некой эффективной массой, которую обычно определяют в единицах массы покоя электрона me (9.11×10−31 кг). Она отлична от массы покоя электрона. Эффективная масса определяется из аналогии со вторым законом Ньютона помощью квантовой механики можно показать, что для электрона во внешнем электрическом полеE: де a - ускорение, - постоянная Планка, k - волновой вектор, который определяется из импульса как k =, ε(k) - закон дисперсии, который связывает энергию с волновым вектором k. В присутствии электрического поля на электрон действует сила, где заряд обозначен q. Отсюда можно получить выражение для эффективной массы m * :

    Для свободной частицы закон дисперсии квадратичен, и таким образом эффективная масса является постоянной и равной массе покоя. В кристалле ситуация более сложна и закон дисперсии отличается от квадратичного. В этом случае только в экстремумах кривой закона дисперсии, там где можно аппроксимировать параболой можно использовать понятие массы. Эффективная масса зависит от направления в кристалле и является в общем случае тензором. Те́нзор эффекти́вной ма́ссы - термин физики твёрдого тела, характеризующий сложную природу эффективной массы квазичастицы (электрона, дырки) в твёрдом теле. Тензорная природа эффективной массы иллюстрирует тот факт, что в кристаллической решётке электрон движется не как частица с массой покоя, а как квазичастица, у которой масса зависит от направления движения относительно кристаллографических осей кристалла. Эффективная масса вводится, когда имеется параболический закон дисперсии, иначе масса начинает зависеть от энергии. В связи с этим возможна отрицательная эффективная масса. По определению эффективную массу находят из закона дисперсии Где- волновой вектор,- символ Кронекера,- постоянная Планка. Электрон. Электро́н - стабильная, отрицательно заряженная элементарная частица, одна из основных структурных единиц вещества. Является фермионом (т.е. имеет полуцелый спин). Относится к лептонам (единственная стабильная частица среди заряженных лептонов). Из электронов состоят электронные оболочки атомов, где их число и положение определяет почти все химические свойства веществ. Движение свободных электронов обусловливает такие явления, как электрический ток в проводниках и вакууме. Электрон как квазичастица. Если электрон находится в периодическом потенциале, его движение рассматривается как движение квазичастицы. Его состояния описываются квазиволновым вектором. Основной динамической характеристикой в случае квадратичного закона дисперсии является эффективная масса, которая может значительно отличаться от массы свободного электрона и в общем случае является тензором. Свойства Заряд электрона неделим и равен −1,602176487(40)×10−19 Клкг - масса электрона.Кл - заряд электрона.Кл/кг - удельный заряд электрона.спин электрона в единицахСогласно современным представлениям физики элементарных частиц, электрон неделим и бесструктурен (как минимум до расстояний 10−17 см). Электрон участвует в слабом, электромагнитном и гравитационном взаимодействиях. Он принадлежит к группе лептонов и является (вместе со своей античастицей, позитроном) легчайшим из заряженных лептонов. До открытия массы нейтрино электрон считался наиболее лёгкой из массивных частиц - его масса примерно в 1836 раз меньше массы протона. Спин электрона равен 1/2, и, таким образом, электрон относится к фермионам. Как и любая заряженная частица со спином, электрон обладает магнитным моментом, причем магнитный момент делится на нормальную часть и аномальный магнитный момент. Иногда к электронам относят как собственно электроны, так и позитроны (например, рассматривая их как общее электрон-позитронное поле, решение уравнения Дирака). В этом случае отрицательно заряженный электрон называют негатроном, положительно заряженный - позитроном. Находясь в периодическом потенциале кристалла, электрон рассматривается как квазичастица, эффективная масса которой может значительно отличаться от массы электрона. Свободный электрон не может поглотить фотон, хотя и может рассеять его (см. эффект Комптона). Дырка. Ды́рка - квазичастица, носитель положительного заряда, равного элементарному заряду в полупроводниках. Определение по ГОСТ 22622-77: Незаполненная валентная связь, которая проявляет себя как положительный заряд, численно равный заряду электрона. Понятие дырки вводится в зонной теории для описания электронных явлений в не полностью заполненной электронами валентной зоне. В электронном спектре валентной зоны часто возникает несколько зон, различающихся величиной эффективной массы и энергетическим положением (зоны легких и тяжёлых дырок, зона спин-орбитально отщепленных дырок).

    Эффективная масса носителей заряда

    Выше было показано, что энергия электрона, перемещающегося внутри кристалла в виде волнового пакета, определяется из выражения (1.24)

    W = ( k ) 2 / 2 m *,

    где, как и преждеW -энергия электрона, Дж; k ­­ - значение волнового числа, м -1 ; - постоянная Дирака, а величина m * имеет смысл эффективной массы электрона.

    Исходя из корпускулярных представлений эффективная масса - это масса заряженной частицы, движущейся внутри кристалла.

    Дважды продифференцируем выражение (1.22) по значению волнового числа k :

    Из второго выражения следует, что эффективную массу носителей заряда в кристалле можно рассчитать из выражения

    Кг .(1.31)

    Из выражения (1.31) следует, что эффективная масса электрона оп­­ределяется значением второй производной функ­ции W=f (k ).

    В ка­­­честве при­мера рас­считаем по формуле (1.31)эффективную мас­­­су свободного эле­к­т­ро­на, когда за­ви­си­мо­сть энергии эле­ ­ к­т­ро­­на от волнового вектора выражается па­ра­бо­лической за­ви­си­­мо­стью ви­­да (1.22). Поскольку d 2 W/d k 2 = /m , то подста­но­вка этой ве­ли­чи­­ны в (5.8) дает m*=m . Сле­­­довательно, эф­­фективная масса сво­бо­д­­ного эле­к­тро­на равнаего мас­се покоя.

    По­­­­­ня­­­тие эффективной массы но­сителей заряда значительно уп­ро­­щает математическое опи­са­ние движения но­си­те­лей в по­тен­­ци­­аль­ном поле кристаллической ре­ше­тки.

    Дифференцируя значение W в выражении (1.22) мы полу­чили, что dW /dk =k /m * . Из урав­­не­ния (1.20) следует, что груп­­по­вая ско­рость v е волнового пакета, об­ла­­да­­ю­щего квазиим­пу­льсом P=m*v е , при его дви­жениив пе­ри­о­ди­­че­с­ком поле кри­­стал­­ли­че­с­­кой ре­шеткиоп­­ре­де­ляетсясо­от­но­шением

    , м /с,(1.32)

    Оценим величину v е . Для этого из выражения (1.26) рассчитаем ма­к­­си­ма­ль­­ное зна­че­­ние во­л­нового числаk эле­к­т­ро­нов в крем­нии, ко­­торое при зна­чении параметра кри­сталлической решетки кре­м­ния a Si =0,543 нм составляет 6 × 10 9 м -1 .В этом случае из со­от­но­ше­ния (1.32) для ско­­ро­сти электрона v е по­лу­чим ве­ли­чи­ну около 6 × 10 5 м/с .

    На рис. 1.19, а пре­д­­­ста­в­ле­на за­ви­си­мость W (k ) для нижней энергетической зоны в пре­де­лах первой зо­­ны Бриллюэна , построенная в соответствии с вы­­ражением (1.28). Энергия эле­ктрона вбли­зи дна зоны проводимости (при ka <<1) определяется путем раз­ло­жения фун­кции cos (ka ) в ряд Мак­лорена : cos (ka ) 1-(ka ) 2 /2!+..., откуда из формулы (1.28) следует, что

    W (k ) W о + (g a 2 k 2)/2=W мин +А k 2 ,(1.33)

    где W мин - минимальное значение энергии при k=0; А =(g a 2)/2 - по­стоян­ная .

    График кривой (1.33) является квадратич­ной параболой.

    Подставляя результат диф­фе­рен­ци­рования дисперсионной кривой (1.33) по k в фор­му­лу (1.32), получим, что вблизи дна и в средней ча­сти зоны зна­че­­ние групповой скорости электрона определяется вы­­ра­жением v e = g ka 2 / , то естьлинейно зависит от изменения во­л­­­­­­­­нового чи­с­ла k (рис. 1.19, б ).

    Рассмотрим теперь зависимость эффективной массы от вол­но­во­­­го числа для электрона, находящегося в периодичес­кой одно­ме­­р­­­ной решетке (рис. 1.19, в .).

    Для эффективной массы электро­на в со­ответствии с формулой (1.31) получим выражение m* = /g a 2 . Сле­­довательно, вбли­­­зи дна и в средней части разрешенной зо­­ны эф­фе­ктивная мас­са электрона является постоянной и по­ло­жи­­те­ль­ной вели­чи­ной . Заметим, что при возрастании ши­­ри­ны раз­­решен­ной зо­ны(что происходит с увеличением па­ра­­­ме­т­ра g) эф­­­фек­тивная масса эле­ктрона уменьшается, а скорость эле­ктро­на v е увеличивается.

    Вблизи границ первой зоны Брил­люэна ско­рость эле­к­т­ро­­нов v e про­хо­­дит че­рез максимум, а на границах зо­ны (k= p /a ) ста­но­вится ра­­­вной нулю (рис. 1.19, б ), что соответствует оста­нов­ке и отра­же­нию электрона. Поэ­тому вб­ли­зи границы зо­­ны Бриллюэна зна­че­ние эффективной мас­сы эле­к­трона воз­­ра­с­та­ет до бесконечности, а фу­н­­кция m * (k ) пре­те­р­пе­ва­ет разрыв и ме­ня­ет знак на отри­ца­тельный (рис. 1.19, в ). Та­ким образом, эф­­фек­ти­в­ная масса элек­т­ро­на вблизи пото­л­ка раз­ре­­шенной зоны является от­рицательной ве­ли­чиной, т. е. m * <0.

    В таблице 1.4. приведены значения эффективных масс электронов и дырок в различных полупроводниковых материалах.

    Таблица 1.4

    Полупроводник

    GaAs

    In Sb

    Эффективная масса электронов,

    1 , 0 6m 0

    2.1. Движение электронов в периодическом поле кристалла.

    Уравнение Шредингера для кристалла

    В первой главе обсуждалось квантово-механическое описание свободных микрочастиц или частиц, находящихся во внешнем силовом поле. Однако основные успехи квантовой механики связаны с изучением систем взаимодействующих микрочастиц (электронов, ядер, атомов, молекул), из которых состоит вещество. В этой главе мы применим квантовую механику к описанию поведения электронов в твердых кристаллических телах, рассматривая кристалл как систему микрочастиц.

    В общем случае эта задача требует решения уравнения Шредингера для системы частиц (электронов и ядер), образующих кристалл. В этом уравнении необходимо учесть кинетическую энергию всех электронов и ядер, потенциальную энергию взаимодействия электронов между собой, ядер между собой, электронов с ядрами. Понятно, что в общем виде решение такого уравнения не представляется возможным, поскольку оно содержит порядка 10 22 переменных. Поэтому задачи, связанные с поведением электронов в кристалле, решаются при некоторых упрощающих допущениях (приближениях), правомерность которых определяется конкретными свойствами кристалла. Рассмотрим основные из этих допущений.

    Адиабатическое приближение . В этом приближении предполагается, что электроны движутся в поле неподвижных ядер. Под ядрами здесь подразумевают собственно ядра атомов со всеми электронам, исключая валентные. Правомерность этого допущения определяется тем, что скорости электронов приблизительно на два порядка больше, чем скорости ядер, поэтому для любой, даже неравновесной конфигурации ядер всегда будет успевать устанавливаться соответствующее ей электронное равновесие. В этом представлении исключается обмен энергией между электронной и ядерной системами, поэтому это приближение называется адиабатическим. Естественно, что в адиабатическом приближении нельзя рассматривать такие явления, как диффузия, ионная проводимость и др., связанные с движением атомов или ионов.

    Одноэлектронное приближение. В этом приближении вместо взаимодействия данного электрона с остальными электронами и ядрами по отдельности рассматривают его движение в некотором результирующем усредненном поле остальных электронов и ядер. Такое поле называют самосогласованным . В одноэлектронном приближении, таким образом, задача сводится к независимому описанию каждого электрона в среднем внешнем поле с потенциальной энергией U (r ). Вид функции U (r ) определяется свойствами симметрии кристалла. Основное свойство самосогласованного поля заключается в том, что оно имеет тот же период, что и поле ядер.

    Таким образом, адиабатическое и одноэлектронное приближение приводит к задаче движения электрона в некотором периодическом потенциальном поле, имеющем период, равный постоянной решетки кристалла. Уравнение Шредингера в этом случае будет иметь вид

    . (2.1)

    Здесь y (r ) - волновая функция электрона , D - оператор Лапласа , m e - масса электрона, Е - энергия электрона в кристалле.

    Следующие два допущения связаны с невозможностью точно определить вид функции U (r ). Поэтому обычно при описании свойств электронов в кристалле рассматривают два предельных случая взаимодействия электронов с решеткой.

    Приближение слабой связи . В этом приближении электроны в кристалле рассматривают как почти свободные частицы, на движение которых оказывает слабое возмущение поле кристаллической решетки. Данное допущение применимо, когда потенциальная энергия взаимодействия электрона с решеткой много меньше его кинетической энергии. Такой подход, который иногда называют "приближением почти свободных электронов ", позволяет получить решение некоторых задач, связанных с поведением валентных электронов в металлах.

    В полупроводниках более приемлемым для анализа их физических свойств является приближение сильной связи . В этом приближении состояние электрона в кристалле мало отличается от его состояния в изолированном атоме. Приближение сильной связи применимо, когда потенциальная энергия электрона значительно больше его кинетической энергии.

    Характерным для обоих приближений слабой и сильной связи является то, что оба они приводят к фундаментальному свойству энергетического распределения электронов в кристалле - возникновению разрешенных и запрещенных энергетических зон.

    2.2. Энергетические зоны в приближении сильной связи

    Несмотря на то, что применим для электронов глубоких энергетических уровней, он хорошо иллюстрирует общие закономерности образования энергетических зон при сближении изолированных атомов и образования из них кристаллической решетки. Рассмотрим качественно картину возникновения энергетических зон на примере образования кристаллической решетки из изолированных атомов натрия. Электронная структура Na 11 (1s 2 2s 2 2p 6 3s): всего в атоме 11 электронов, по два электрона на 1s и 2s уровнях, 6 электронов на уровне 2р, последний заполненный уровень в атоме натрия - 3s, на котором находится один валентный электрон. Поскольку в приближении сильной связи предполагается, что состояние электрона в кристалле незначительно отличается от его состояния в изолированном атоме, будем в оценке влияния на это состояние кристаллического поля соседних атомов исходить из энергетической структуры изолированного атома. На рис. 2.1,а показаны схематически энергетические уровни и распределение электронов на них для атомов натрия, находящихся на достаточно большом расстоянии друг от друга так, что потенциальные кривые электронов не перекрываются (взаимодействие между атомами пренебрежимо мало). Состояния электронов в этом случае описываются волновыми функциями изолированного атома, разрешенные уровни энергии дискретны и определяются квантовыми числами n , l , m - главным, орбитальным, магнитным соответственно. На каждом невырожденном по энергии уровне могут находиться с учетом спина по два электрона, а на каждом вырожденном по орбитальному квантовому числу уровне 2(2l +1) электронов.


    Сблизим теперь эти атомы на расстояние, равное параметру кристаллической решетки натрия (рис. 2.1,б). Взаимодействие с соседними атомами будет оказывать влияние на первоначальные атомные энергетические уровни. В приближении сильной связи предполагается, что потенциальная энергия электрона в кристалле U (r ) может быть представлена суммой

    , (2.2)

    где U a - потенциальная энергия электрона в изолированном атоме; D U (r ) - поправка, учитывающая влияние соседних атомов. Предполагается, что соседние атомы оказывают слабое возмущение на U a (D U (r ) << U a ). Пренебрежение поправкой D U (r ) приводит к уравнению Шредингера для изолированного атома.

    Поскольку в кристалле каждый уровень изолированного атома повторяется N раз, то он становится N-кратно вырожденным. Известно, что электрическое поле снимает вырождение и каждый уровень изолированного атома расщепляется на N близко расположенных (по значениям энергии) энергетических уровней. Здесь имеется аналогия со связанными осцилляторами. Если мы имеем два не связанных между собой каким-либо взаимодействием совершенно одинаковых осциллятора (математические маятники, электрические колебательные контуры и др.), то частоты их собственных колебаний совпадают. Взаимодействие между осцилляторами приводит к расщеплению одной частоты на две близкие частоты (при условии, что энергия взаимодействия между осцилляторами много меньше энергии собственных колебаний). Для N связанных между собой осцилляторов получим полосу из N близко расположенных частот. Аналогичный результат получается для системы взаимодействующих атомов. Число энергетических уровней, на которые расщепляется каждый энергетический уровень изолированного атома, равно числу атомов в кристалле. Величина расщепления тем больше, чем сильнее взаимодействие между атомами, т.е. чем меньше расстояние между ними. На рис. 2.2 показано схематически расщепление двух энергетических уровней атома под воздействием полей соседних атомов. Схема приведена для восьми атомов.

    Решение уравнения Шредингера в приближении сильной связи приводит к следующему выражению для энергии электрона в периодическом поле трехмерной кубической решетки

    , (2.3)

    здесь C - некоторая постоянная величина, которая может принимать положительные и отрицательные значения; А - обменный интеграл, зависящий от перекрытия волновых функций атомов; k x , k y , k z - компоненты волнового вектора электрона; а - параметр решетки кристалла.


    Экстремальные значения энергии электрона Е имеют место при cosk i a = ± 1 (i = x, y, z ) и определяют ширину энергетической зоны, образованной расщепленным уровнем изолированного атома. Для простой кубической решетки ширина энергетической зоны D E = 12A . Ширина энергетической зоны для более высоких уровней больше, т.к. для этих состояний электронов сильнее перекрываются волновые функции электронов и, следовательно, больше обменный интеграл А . Середина зоны сдвинута относительно положения энергетического уровня изолированного атома на величину С . Направление смещения зависит от знака С . Энергетические зоны в общем случае разделены интервалами энергии D E g , называемыми запрещенными зонами . Иногда энергетические зоны могут перекрываться.

    В реальных кристаллах размером приблизительно 1 см 3 содержится ~ 10 22 атомов. Ширина энергетической зоны обычно ~1 эВ. В этом случае расстояние между уровнями в зоне составляет ~ 10 -22 эВ. Следовательно, спектр электронов в пределах энергетической зоны можно считать практически непрерывным.

    2.3. Общие свойства волновой функции электрона в периодическом потенциале. Теорема Блоха

    Для точного решения в одноэлектронном приближении задачи о движении электрона в кристалле необходимо решить уравнение Шредингера вида (2.1), где потенциал U (r ) имеет периодичность кристаллической решетки, т.е.

    , (2.3)

    здесь R - любой вектор прямой кристаллической решетки.

    Необходимость решения квантово-механической задачи связана с тем, что длина волны де Бройля электрона по порядку величины совпадает с периодом потенциала U (~ 10 -8 cм). Можно получить некоторые общие свойства волновой функции электрона в кристалле, используя только свойство периодичности потенциала кристаллического поля, не решая уравнения Шредингера. Мы будем рассматривать здесь идеализированный случай гипотетического кристалла с абсолютно идеальной периодичностью потенциала. Типичный вид потенциала вдоль линии, соединяющей цепочку атомов (одномерный случай) мы получили ранее, анализируя качественно влияние взаимодействия атомов на спектр электронов при сближении изолированных атомов (рис. 2.1,б). Точное определение функции U (r ) является очень сложной задачей.

    Фундаментальные свойства волновой функции стационарного состояния определяются теоремой Блоха : собственные функции стационарного волнового уравнения с периодическим потенциалом имеют вид произведения функции плоской волны на функцию с периодичностью потенциала:

    . (2.4)

    Индекс k у волновой функции указывает на то, что эта функция зависит от волнового числа. Появление индекса n связано с тем, что при фиксированных значениях k волновая функция не одинакова для электронов различных зон, образовавшихся из атомных уровней, n часто называют номером зоны. Множитель u n ,k (r ) называют блоховским множителем . Он учитывает влияние кристаллического поля и отражает тот факт, что вероятность нахождения электрона в той или иной области кристалла повторяется от ячейки к ячейке.

    Схематическое изображение электронных волновых функций, представленных в теореме Блоха, показано для одномерного случая на рис.2.3. Вверху (рис. 2.3,а) представлен потенциал U (x ) вдоль цепочки атомов. Ниже (рис. 2.3,б) приведен пример собственной функции (ее действительной части). Эта функция равна произведению блоховского множителя u (x ), имеющего периодичность решетки (рис. 2.3,в) и волновой функции свободного электрона в виде плоской волны (рис. 2.3,г), длина которой определяется волновым числом k . Представление волновой функции в виде (2.4) может быть сделано различными способами. Покажем это для одномерного случая. Одномерная волновая функция по теореме Блоха может быть записана в виде

    . (2.5)

    Домножим и разделим правую часть равенства (2.5) на функцию , где

    а - параметр решетки. Тогда получим

    . (2.6)


    В квадратных скобках формулы (2.6) стоит функция, удовлетворяющая требованиям теоремы Блоха: она является периодической с периодом а, т.к. равна произведению двух периодических функций с тем же периодом. Функция описывает плоскую волну, но с другим волновым вектором, отличающимся на величину . Таким образом, одно и то же стационарное состояние электрона в кристаллическом периодическом поле может быть описано как волновой функцией с волновым числом k , так и волновой функцией с волновым числом и другим блоховским множителем. Аналогичные результаты получатся, если k изменить на величину , где n - любое целое число.

    Для одномерной цепочки атомов величина совпадает с размером первой зоны Бриллюэна в обратном пространстве. Если ограничиться рассмотрением волновых чисел в пределах первой зоны Бриллюэна, т.е. в интервале от до , то этот набор k исчерпает все физически различные значения волновых чисел в кристалле.

    2.4. Модель Кронига-Пенни

    Теорема Блоха позволяет аналитически решить задачу об электроне в периодическом поле кристаллической решетки в приближении слабой связи при некоторых упрощающих предположениях. Основная трудность в решении уравнения (2.1) связана с невозможностью точно записать вид функции U (r ). Поэтому часто периодическую зависимость функции U (r ) заменяют более простой функцией с точно таким же периодом. В модели Кронига-Пенни ограничиваются рассмотрением одномерной задачи, в которой периодический потенциал заменяется цепочкой прямоугольных потенциальных ям (рис. 2.4). Ширина каждой ямы а , они отделены друг от друга прямоугольными потенциальными барьерами высотой U 0 и шириной b . Период повторения ям с = а + b .


    Стационарное уравнение Шредингера будет иметь в этом случае вид

    . (2.7)

    Начало системы координат (точку х = 0) выберем так, чтобы она совпадала с левым краем потенциальной ямы, как это показано на рис. 2.4,б. Tогда потенциальная функция

    . (2.8)

    В соответствии с теоремой Блоха волновая функция электрона y (x ) может быть представлена в виде

    . (2.9)

    Индексы n и k упущены для простоты записи. Функция u (x ) (блоховский множитель) имеет период c

    Подставляя (2.9) в уравнение (2.7), получим дифференциальное уравнение для блоховского множителя

    (2.10a)

    для электронов, находящихся внутри потенциальных ям, и

    (2.10б)

    для электронов, находящихся вне потенциальных ям. В этих уравнениях E k - кинетическая энергия электрона

    Общее решение уравнения (2.10а) для электронов внутри потенциальных ям может быть записано в виде

    , (2.11а)

    где a - некоторый параметр, который может быть найден подстановкой решения в виде (2.11а) в исходное уравнение (2.10а). Эта подстановка приводит к следующему значению a :

    В области вне потенциальных ям при условии, что высота потенциального барьера U 0 выше полной энергии электрона Е , решение уравнения (2.10б) имеет вид

    , (2.11б)

    где

    .

    Постоянные A , B , C и D в формулах (2.11а) и (2.11б) находятся как обычно из граничных условий. Граничные условия требуют, чтобы функция u (x ) и ее первая производная в местах скачков потенциала, т. е. на стенках потенциальных ям, были непрерывны. Эти требования приводят к следующей системе уравнений:

    (2.12)

    Система уравнений (2.12) после подстановки в нее функций и , согласно равенствам (2.10а) и (2.10б), преобразуется в систему линейных однородных алгебраических уравнений, в которых неизвестными являются коэффициенты A , B , C и D . Определитель этой системы будет равен нулю (только при этом условии система линейных однородных уравнений имеет отличные от нуля решения), если выполняется следующее равенство:

    . (2.13)

    Выражение (2.13) можно значительно упростить, если допустить, что ширина барьера стремится к нулю , а его высота - к бесконечности , но таким образом, чтобы произведение U 0 b оставалось постоянным . При этих условиях выражение (2.13) преобразуется к виду:

    , (2.14)

    где

    .

    Поскольку a - параметр, определяемый энергией Е электрона, а k - волновой вектор электрона, то выражение (2.14) представляет зависимость E(k) , т. е. дисперсионное соотношение для электрона в кристаллической решетке. Это дисперсионное соотношение можно записать в явном виде, решив уравнение (2.14) относительно a при фиксированном значении параметра p.

    2.5. Энергетические зоны в модели Кронига-Пенни

    Найдем в явном виде дисперсионное соотношение для электрона в периодическом кристаллическом поле. Исследуя выражение (2.14) находим, что волновое число k может быть вещественным только при условии, что значения левой части этого равенства находятся в интервале от -1 до +1. Зависимость левой части уравнения (2.14) от a для параметра p = 2 приведен на рис. 2.5. Заштрихованные участки соответствуют запрещенным значениям параметра a и, следовательно, энергии электрона в кристалле. Этот результат получен только на основании теоремы Блоха, условием применимости которой является единственное требование периодичности потенциала в стационарном уравнении Шредингера для электрона в кристалле. Таким образом, наличие периодического потенциала приводит к появлению для энергии электрона таких интервалов, для которых нет волнового решения, соответствующего вещественным значениям волнового числа электрона. Результатом этого является чередование разрешенных и запрещенных зон энергии для электрона в кристалле .



    На рис. 2.6 приведено дисперсионное соотношение для энергии электрона в кристалле. Видно, что зависимость E(k) претерпевает разрывы в точках, где и т. д.

    Если параметр p = 0 , согласно равенству (2.14) и

    Последнее равенство соответствует дисперсионному соотношению для свободного электрона. На рис. 2.6 это дисперсионное соотношение изображено штриховой линией.

    Поскольку, как подчеркивалось выше, все физически различимые значения волнового числа лежат в пределах первой зоны Бриллюэна, которая в одномерном случае ограничена интервалом значений волнового числа от до , целесообразно перейти от представления расширенных зон Бриллюэна (рис. 2.6) к представлению приведенных зон Бриллюэна (рис. 2.7). Волновые функции, соответствующие вещественным k , могут быть построены только для заштрихованных областей энергии электрона. Эти области представляют собой разрешенные энергетические зоны, которые отделены друг от друга зонами (щелями) запрещенных энергий.


    Предел P ® ¥ дает дискретный ряд уровней

    которые совпадают с полученными в первой главе результатами для частицы в одномерной прямоугольной потенциальной яме (см. уравнение (1.34)).Энергия электронов в периодическом поле кристалла претерпевает разрыв на границах зон Бриллюэна, для которых . Физическая природа разрывов связана с

    отражением электронных волн от атомных плоскостей кристаллической решетки. Действительно, с учетом того, что , условие, при котором происходит нарушение непрерывности функции E(k) , может быть записано в виде , что совпадает с условием Вульфа-Брэгга при угле падения волн 90 0 .

    2.6. Заполнение энергетических зон электронами.

    Металлы, диэлектрики и полупроводники

    Твердые тела делятся на металлы, диэлектрики и полупроводники прежде всего по величине удельной электропроводности. Для типичных металлов эта величина составляет 10 8 ...10 6 (Ом м) -1 . В диэлектриках удельная электропроводность ничтожно мала: s < 10 -8 (Ом м) -1 . Для хороших диэлектриков удельная электропроводность достигает величины 10 -11 (Ом м) -1 . Твердые тела с промежуточной электропроводностью относят к полупроводникам. Оказывается, что столь большие различия в электрических свойствах твердых тел связаны со структурой и степенью заполнения электронами энергетических зон в этих телах.

    Несмотря на то, что энергетические зоны квазинепрерывны, они состоят пусть из очень большого, но конечного числа энергетических уровней. Число этих уровней определяется числом атомов N, объединенных в кристалл, и орбитальным квантовым числом l :

    (2.15)

    В каждой энергетической зоне могут располагаться в соответствии принципом Паули не более 2(2l + 1) электронов - по два с противоположными спинами на каждом уровне. Число электронов в кристалле также конечно и зависит как от числа атомов N , так и от количества электронов в атоме. Поскольку электроны стремятся занять энергетические уровни с наинизшей энергией, то в кристалле нижние энергетические зоны оказываются полностью заполненными, а самые верхние заполнены либо частично, либо совершенно свободны.

    Частично заполненная зона образуется, например, у кристалла натрия. Этот элемент имеет полностью заполненные 1s-, 2s- и 2p-уровни, на которых располагается в общей сложности 10 электронов. В кристалле Na соответствующие 1s-, 2s- и 2p-зоны также будут полностью заполнены. Одиннадцатый валентный электрон в атоме Na располагается на 3s-уровне, на котором могут располагаться 2 электрона. Следовательно, 3s-зона кристаллического натрия будет заполнена лишь наполовину. Зонная структура Na приведена на рис. 2.8,a. Заполненные электронами зоны и часть 3s-зоны заштрихованы. E g - ширина запрещенной зоны.

    Часто частично заполненная зона образуется в результате перекрытия полностью заполненной зоны со следующей совершенно свободной. Пример такой зонной структуры приведен на рис. 2.8,б для бериллия, у которого перекрываются заполненная 2s- и свободная 2p-зоны.

    Большую группу составляют кристаллы, у которых над целиком заполненным зонами располагаются совершенно пустые зоны, причем ширина запрещенной зоны варьируется у них от нескольких десятков электронвольт до единиц электронвольт. Типичные примеры этой группы кристаллов показаны на рис. 2.8, в, г. Это углерод в модификации алмаза и кремний.

    Структура энергетических зон кристалла оказывает решающее влияние на величину его электропроводности. Поскольку электрический ток есть направленное движение зарядов (в металлах - электронов), то возникновение электрического тока связано с увеличением импульса электронов вдоль направления действующей на него силы. Вместе с импульсом электрона меняется его волновой вектор. Поскольку энергия и волновой вектор электрона - две взаимосвязанные величины, связь между которыми определяется дисперсионным соотношением, то увеличение волнового числа должно обязательно сопровождаться увеличением энергии электрона. Нетрудно оценить, каково увеличение энергии электрона за счет его ускорения в электрическом поле, вызывающим электрический ток в проводниках. Если величина напряженности электрического поля равна 10 4 В/м, то на расстоянии, равном средней длине свободного пробега электрона в кристалле, а она обычно составляет ~10 -8 м, электрон приобретает энергию приблизительно 10 -4 эВ. Понятно, что эти значения энергии позволяют электрону переходить с уровня на уровень только внутри одной энергетической зоны. Для перехода между зонами необходима энергия больше ширины запрещенной зоны E g , которая, как указывалось выше, составляет 0.1 ... 10 эВ.


    Эти рассуждения приводят к выводу о том, что для появления у тел высокой проводимости необходимо, чтобы в их энергетическом спектре присутствовали зоны, заполненные частично. На свободные уровни этих зон могут переходить электроны, увеличившие свою энергию под действием внешнего электрического поля (рис. 2.9). Поэтому тела с частично заполненными энергетическими зонами являются проводниками . Частично заполненные зоны имеют все металлы .



    Теперь рассмотрим кристаллы, верхняя энергетическая зона которых заполнена электронами полностью (рис. 2.8, в, г). Внешнее электрическое поле не в состоянии изменить характер движения электронов, т. к. оно не в состоянии поднять электроны в вышележащую свободную зону. Внутри же самой полностью заполненной зоны, не содержащей ни одного свободного уровня, оно может вызывать лишь перестановку электронов местами, что не нарушает симметрии их распределения по скоростям. Это не приводит к возникновению электрического тока в таких кристаллах.

    Таким образом, твердые тела с полностью заполненными электронами энергетическими зонами являются непроводниками . По ширине запрещенной зоны непроводники делятся на диэлектрики и полупроводники .

    К диэлектрикам относят тела, имеющие относительно широкую запрещенную зону. У типичных диэлектриков E g > 3 эВ. Так, у алмаза E g = 5,2 эВ; у нитрида бора E g = 4,6 эВ; у Al 2 O 3 E g = 7 эВ.

    У типичных полупроводников ширина запрещенной зоны менее 3 эВ. Например, у германия E g = 0,66 эВ; у кремния E g = 1,12 эВ; у антимонида индия E g = 0,17 эВ.

    Верхняя заполненная зона полупроводников и диэлектриков называется валентной зоной , следующая за ней свободная зона называется зоной проводимости . В металлах частично заполненную зону называют как валентной зоной, так и зоной проводимости.

    2.7. Эффективная масса электрона в кристалле и ее физический смысл

    Особенности движения электронов в кристалле обусловлены их взаимодействием с кристаллической решеткой. Оказывается, что движение отдельного электрона в кристалле можно описывать тем же уравнением, что и для свободной частицы, т.е. в виде второго закона Ньютона, в котором учитываются только внешние по отношению к кристаллу силы.

    Рассмотрим движение электрона в кристалле под действием внешнего электрического поля. Внешнее электрическое поле приводит к увеличению скорости электрона и, следовательно, его энергии. Поскольку электрон в кристалле - это микрочастица, описываемая волновой функцией, то энергия электрона зависит от его волнового вектора. Зависимость между этими двумя характеристиками электрона в кристалле определяется дисперсионным соотношением, которое в свою очередь зависит от строения энергетических зон. Поэтому при расчете движения электрона в кристалле необходимо исходить из закона дисперсии.

    Свободный электрон описывается монохроматической волной де Бройля и электрон в этом состоянии нигде не локализован. В кристалле же электрону необходимо сопоставить группу волн де Бройля с различными значениями частот w и волновых векторов k . Центр такой группы волн перемещается в пространстве с групповой скоростью

    Эта групповая скорость соответствует скорости перемещения электрона в кристалле.

    Задачу о движении электрона будем решать для одномерного случая. Увеличение энергии электрона dE под действием внешней силы F равно элементарной работе dA , которую совершает внешняя сила за бесконечно малый промежуток времени dt :

    (2.16)

    Учитывая, что для электрона как микрочастицы , имеем следующее выражение для групповой скорости

    Подставляя полученное выражение для групповой скорости в формулу (2.16), получим

    Отсюда

    Распространяя этот результат на трехмерный случай, получим векторное равенство

    (2.17)

    Как видно из этого равенства, величина ћ k для электрона в кристалле изменяется со временем под действием внешней силы точно так же, как импульс частицы в классической механике Несмотря на это, ћ k нельзя отождествить с импульсом электрона в кристалле, поскольку компоненты вектора k определены с точностью до постоянных слагаемых вида (здесь a - параметр кристаллической решетки, n i =1, 2, 3, ...). Однако в пределах первой зоны Бриллюэна ћ k обладает всемисвойствами импульса. По этой причине величину ћ k называют квазиимпульсом электрона в кристалле.

    Вычислим теперь ускорение a , приобретаемое электроном под действием внешней силы F . Ограничимся, как и в предыдущем случае, одномерной задачей. Тогда

    При вычислении ускорения учтено, что энергия электрона является функцией времени . Учитывая, что , получим

    (2.18)

    Сравнивая выражение (2.18) со вторым законом Ньютона, видим, что электрон

    в кристалле движется под действием внешней силы так, как двигался бы под действием той же силы свободный электрон, если бы он обладал массой

    (2.19)

    Величину m * называют эффективной массой электрона в кристалле .

    Строго говоря, эффективная масса электрона никакого отношения к массе свободного электрона не имеет. Она является характеристикой системы электронов в кристалле в целом . Вводя понятие эффективной массы, мы реальному электрону в кристалле, связанному взаимодействиями с кристаллической решеткой и другими электронами, сопоставили некую новую свободную “микрочастицу”, обладающую лишь двумя физическими параметрами реального электрона - его зарядом и спином. Все остальные параметры - квазиимпульс, эффективная масса, кинетическая энергия и т.д. - определяются свойствами кристаллической решетки. Такую частицу часто называют квазиэлектроном, электроном-квазичастицей, носителем отрицательного заряда или носителем заряда n-типа , чтобы подчеркнуть ее отличие от реального электрона.

    Особенности эффективной массы электрона связаны с видом дисперсионного соотношения электрона в кристалле (рис.2.10). Для электронов, располагающихся у дна энергетической зоны, дисперсионное соотношение можно приблизительно описать параболическим законом

    Вторая производная , следовательно, эффективная масса положительная. Такие электроны ведут себя во внешнем электрическом поле подобно свободным электронам: они ускоряются под действием внешнего электрического поля. Отличие таких электронов от свободных состоит в том, что их эффективная масса может существенно отличаться от массы свободного электрона. Для многих металлов, в которых концентрация электронов в частично заполненной зоне мала и они располагаются вблизи ее дна, электроны проводимости ведут себя подобным образом. Если к тому же эти электроны слабо связаны с кристаллом, то их эффективная масса незначительно отличается от массы покоя реального электрона.

    Для электронов, находящихся у вершины энергетической зоны (рис.2.10), дисперсионное соотношение можно приблизительно описать параболой вида

    и эффективная масса является величиной отрицательной. Такое поведение эффективной массы электрона объясняется тем, что он при своем движении в кристалле обладает не только кинетической энергией поступательного движения Е к , но и потенциальной энергией его взаимодействия с кристаллической решеткой U . Поэтому часть работы A внешней силы может перейти в кинетическую энергию и изменить ее на величину D E к , другая часть - в потенциальную D U :



    Если при движении электрона в потенциальную энергию переходит не только вся работа внешней силы, но и часть кинетической энергии, имевшейся у электрона (D E к < 0 ), то его скорость будет уменьшаться. В этом случае электрон ведет себя как частица с отрицательной эффективной массой. В случае, когда вся работа внешней силы переходит в потенциальную энергию (D E к = 0 ), то приращения кинетической энергии и скорости не происходит. Электрон ведет себя как частица с бесконечно большой эффективной массой. Бесконечно большой эффективной массой обладает электрон в точках перегиба дисперсионной кривой, которые на рис. 2.10 обозначены штриховыми линиями. Схематически зависимость эффективной массы электрона от его волнового числа показана на рис. 2.11.

    2.8. Собственные полупроводники. Понятие о дырках

    Из структуры энергетических зон полупроводников следует, что при абсолютном нуле они не проводят электрического тока. Нагревание их приводит к тому, что часть электронов валентной зоны приобретает энергию, достаточную для их перехода в зону проводимости, в результате чего появляется заметная электропроводность. С увеличением температуры число электронов в зоне проводимости увеличивается и вместе с этим растет электропроводность полупроводника. Тепловое возбуждение электронов проводимости иллюстрирует рис. 2.12. Е с и Е v обозначают дно зоны проводимости и потолок валентной зоны соответственно. Кроме температуры, возбуждение электронов проводимости может происходить и под действием других факторов, способных сообщить электронам энергию, достаточную для перехода их в зону проводимости. Этими факторами могут быть световое облучение, ионизирующее излучение и др.


    Рассмотренный выше механизм возникновения электропроводности полупроводниковых кристаллов, справедлив для абсолютно чистых материалов, не содержащих примесей, влияющих на электропроводность. Такие полупроводники называются собственными , а их электропроводность собственной электропроводностью . К собственным полупроводникам относятся кристаллы чистых химических элементов, таких как германий (Ge), кремний (Si), селен (Se), теллур (Te) и др., а также некоторые химические соединения: арсенид галлия (GaAs), арсенид индия (InAs), антимонид индия (InSb), карбид кремния (SiC) и многие другие.
    В разделе 2.8 показано, что электроны, расположенные у по-толка энергетической зоны, об-ладают отрицательной эффектив-ной массой. Именно такие электроны, расположенные у вершины валентной зоны, переходят в зону проводимости и участвуют в электропроводности полупроводника. Каждому электрону, перешедшему в зону проводимости, в валентной зоне соответствует незанятое (вакантное) состояние, которое называют дырочным состоянием . Дырочные состояния изображены на рис. 2.12 светлыми кружками. Наличие вакансий в валентной зоне позволяет электронам этой зоны изменять свое энергетическое состояние под действием внешнего электрического поля. Рассмотрим подробнее этот процесс на примере кристалла, в котором имеется одно вакантное состояние. В отсутствие электрического поля это состояние будет находиться в вершине зоны, т.к. электроны стремятся расположиться на уровнях с наименьшей энергией (рис. 2.13,а). Занятые электронами состояния изображены на рис. 2.13 точками и расположены на дисперсионной кривой, описывающей зависимость энергии электрона от компоненты волнового вектора k x . У вершины энергетической зоны эта кривая приблизительно описывается параболой. Если к полупроводнику приложить внешнее электрическое поле Е (пусть для определенности оно будет направлено вдоль положительного направления оси х , рис. 2.13,б) , то у каждого электрона х -компонента волнового вектора k x одновременно получит отрицательное приращение. Этот вывод следует из уравнения движения, одинакового для каждого электрона:

    . (2.20)

    Следовательно, электроны валентной зоны будут перемещаться в направлении, указанном стрелкой на рис. 2.13,б. Вакантное состояние в результате этого движения электронов вначале переместится в точку Е , а затем - в точку D и т.д. Таким образом, последовательное перемещение электронов по энергетическим уровням под влиянием электрического поля эквивалентно перемещению вакантного состояния. Квантовое состояние, не занятое электроном в энергетической зоне, называется дыркой . Суммарный волновой вектор электронов в полностью заполненной энергетической зоне равен нулю, поскольку дисперсионная кривая симметрична относительно точки k = 0 и каждому электрону с волновым вектором k всегда найдется электрон с противоположным по знаку волновым вектором - k . Если из состояния с волновым вектором k e удален электрон, то полный волновой вектор системы станет равным - k e . Таким образом, дырке следует приписать волновой вектор

    . (2.21)

    Учитывая (2.20) и (2.21), уравнение движения дырки будет иметь вид

    . (2.22)

    Это уравнение движения положительного заряда в электрическом поле. Поскольку дырка перемещается вдоль направления действующей на нее силы, то этой частице следует приписать положительную эффективную массу, равную по абсолютному значению отрицательной эффективной массе электрона, покинувшего вакантное состояние у потолка валентной зоны.

    Вычислим ток, создаваемый электронами полностью заполненной энергетической зоны. Вклад в плотность тока от одного электрона, движущегося со скоростью v j равен

    Ток всех электронов валентной зоны равен сумме токов отдельных электронов:

    Суммирование производится по всем состояниям, занятым электронами. Поскольку дисперсионные кривые симметричны, каждому электрону с ненулевым значением скорости в положительном направлении всегда найдется электрон с равной по абсолютному значению, но противоположно направленной скоростью. Следовательно, сила тока, создаваемого электронами полностью заполненной зоны, будет равна нулю.

    Если в валентной зоне заняты все состояния, кроме одного, характеризующегося волновым вектором k s и скоростью v s (рис. 2.13,г), то суммарную плотность тока в этом случае можно представить в следующем виде:

    .

    В этой формуле учтено, что первое слагаемое в силу симметричности состояний электронов равно нулю.

    Таким образом, движение электронов валентной зоны, в которой есть одно вакантное состояние, эквивалентно движению одной частицы с положительной эффективной массой и положительным электрическим зарядом, помещенной в это состояние.

    2.9. Примесные полупроводники

    В реальных кристаллах полупроводников всегда присутствуют, пусть и в небольших количествах, дефекты, примеси, некоторые из которых оказывают существенное влияние на их электропроводность. Например, добавление в кремний бора в количестве одного атома на 10 5 атомов кремния увеличивает его электропроводность при комнатной температуре в 1000 раз. Полупроводники, содержащие примеси, существенно влияющие на его электропроводность, называются примесными полупроводниками , а их электропроводность - примесной электропроводностью .

    Рассмотрим механизм примесной проводимости на примере полупроводникового кристалла кремния с примесными атомами фосфора. Четыре валентных электрона кремния образуют в химически чистом кристалле парные ковалентные связи с четырьмя своими ближайшими соседями (рис. 2.14,а). Примесный атом фосфора замещает один из атомов кремния в узле кристаллической решетки. У атома фосфора пять валентных электронов, четыре из которых поддерживают связи с соседними атомами кремния, а пятый остается свободным (рис. 2.14,б). Этот избыточный электрон может перейти в зону проводимости кремния и "участвовать" в создании электрического тока. Примеси, поставляющие в зону проводимости дополнительное количество электронов, называются донорными примесями , а полупроводники с такими примесями - донорными полупроводниками или полупроводниками n-типа . Наиболее распространенными донорными примесями в кристаллах кремния и германия являются атомы пятой группы периодической системы элементов Д. И. Менделеева: фосфор (P), мышьяк (As), сурьма (Sb), висмут (Bi). Энергию, которую необходимо затратить, чтобы перевести электрон примесного донорного атома в зону проводимости, называют энергией связи донорной примеси. Оценить энергию связи донорной примеси можно из простой модели, подобной боровской модели атома водорода. Согласно этой модели примесный электрон движется по круговой орбите в кулоновском поле сил иона фосфора подобно электрону в поле ядра атома водорода. Различие заключается в том, что поле примесного иона ослаблено диэлектрическими свойствами кристалла полупроводника. Это влияние учитывается диэлектрической проницаемостью среды, которая для типичных полупроводников составляет 5 ... 2000. Необходимо учесть также тот факт, что эффективная масса электрона в кристалле отличается от массы свободного электрона. Для количественных оценок воспользуемся результатами, полученными в теории Бора для атома водорода. Энергия связи электрона в атоме водорода равна . Учитывая диэлектрическую проницаемость полупроводника e и заменяя массу свободного электрона m на его эффективную массу в кристалле m* , получим следующее выражение для энергии ионизации донорной примеси:


    . (2.23)

    Энергия ионизации свободного атома водорода равна 13,6 эВ. В соответствии с формулой (2.23) это значение надо умножить на коэффициент , чтобы получить величину E d . В кремнии e = 11,7; m */m » 0,2. В результате получим E d » 0,02 эВ.

    Экспериментальное значение энергии ионизации фосфора в кремнии составляет 0,044 эВ. Другие донорные примеси имеют в кремнии и германии энергию ионизации того же порядка величины (см. таблицу).

    Таблица

    Примеси

    Энергия ионизации, эВ

    Германий

    Кремний

    Доноры

    0,0120

    0,044

    0,0127

    0,049

    0,0096

    0,039

    0,069

    Акцепторы

    0,0104

    0,045

    0,0102

    0,057

    0,0108

    0,065

    0,0112

    0,16

    С точки зрения зонной теории примесному атому фосфора соответствует локальный энергетический уровень, расположенный в запрещенной зоне кремния на величину E d ниже дна зоны проводимости (рис. 2.14, в). Поскольку эти уровни локализованы вблизи примесных атомов они на зонной диаграмме изображаются штриховыми линиями.

    По-иному ведут себя примесные атомы элементов третьей группы периодической системы элементов, такие как B, Al, Ga, In. Например, замещение в решетке кремния одного атома Si на атом бора приводит к тому, что одна из связей остается незаполненной. Эта связь может быть восстановлена, если атом бора “заберет” один электрон из валентной зоны кремния, образуя (рис. 2.15, а) в ней дырку. На зонной диаграмме это соответствует появлению локальных уровней примеси в запрещенной зоне кремния вблизи потолка валентной зоны. Этот уровень свободен, на него могут перейти электроны из валентной зоны кремния. Образовавшиеся в валентной зоне дырки являются носителями электрического тока в такого типа примесных полупроводниках.

    Примеси, захватывающие электроны из валентной зоны полупроводников, называют акцепторными примесями , а энергетичекие уровни этих примесей - акцепторными уровнями . Разность между энергией акцепторного уровня и энергией потолка зона проводимости E a называется энергией активации акцепторной примеси . Полупроводники, содержащие акцепторные примеси, называют акцепторными полупроводниками или полупроводниками р-типа . Часто их называют дырочными полупроводниками .


    Особенности движения электронов в кристалле обусловлены их взаимодействием с кристаллической решеткой. Оказывается, что движение отдельного электрона в кристалле можно описывать тем же уравнением, что и для свободной частицы, т.е. в виде второго закона Ньютона, в котором учитываются только внешние по отношению к кристаллу силы.

    Рассмотрим движение электрона в кристалле под действием внешнего электрического поля. Внешнее электрическое поле приводит к увеличению скорости электрона и, следовательно, его энергии. Поскольку электрон в кристалле - это микрочастица, описываемая волновой функцией, то энергия электрона зависит от его волнового вектора. Зависимость между этими двумя характеристиками электрона в кристалле определяется дисперсионным соотношением, которое в свою очередь зависит от строения энергетических зон. Поэтому при расчете движения электрона в кристалле необходимо исходить из закона дисперсии.

    Свободный электрон описывается монохроматической волной де Бройля и электрон в этом состоянии нигде не локализован. В кристалле же электрону необходимо сопоставить группу волн де Бройля с различными значениями частот и волновых векторов k . Центр такой группы волн перемещается в пространстве с групповой скоростью

    Эта групповая скорость соответствует скорости перемещения электрона в кристалле.

    Задачу о движении электрона будем решать для одномерного случая. Увеличение энергии электрона dE под действием внешней силы F равно элементарной работе dA , которую совершает внешняя сила за бесконечно малый промежуток времени dt :

    Учитывая, что для электрона как микрочастицы , имеем следующее выражение для групповой скорости

    Подставляя полученное выражение для групповой скорости в формулу (2.16), получим

    Распространяя этот результат на трехмерный случай, получим векторное равенство

    Как видно из этого равенства, величина ћ k для электрона в кристалле изменяется со временем под действием внешней силы точно так же, как импульс частицы в классической механике Несмотря на это, ћ k нельзя отождествить с импульсом электрона в кристалле, поскольку компоненты вектора k определены с точностью до постоянных слагаемых вида (здесь a - параметр кристаллической решетки, n i =1, 2, 3, ...). Однако в пределах первой зоны Бриллюэна ћ k обладает всемисвойствами импульса. По этой причине величину ћ k называют квазиимпульсом электрона в кристалле.

    Вычислим теперь ускорение a , приобретаемое электроном под действием внешней силы F . Ограничимся, как и в предыдущем случае, одномерной задачей. Тогда

    При вычислении ускорения учтено, что энергия электрона является функцией времени . Учитывая, что , получим

    (2.18)

    Сравнивая выражение (2.18) со вторым законом Ньютона, видим, что электрон

    в кристалле движется под действием внешней силы так, как двигался бы под действием той же силы свободный электрон, если бы он обладал массой

    (2.19)

    Величину m * называют эффективной массой электрона в кристалле .

    Строго говоря, эффективная масса электрона никакого отношения к массе свободного электрона не имеет. Она является характеристикой системы электронов в кристалле в целом . Вводя понятие эффективной массы, мы реальному электрону в кристалле, связанному взаимодействиями с кристаллической решеткой и другими электронами, сопоставили некую новую свободную “микрочастицу”, обладающую лишь двумя физическими параметрами реального электрона - его зарядом и спином. Все остальные параметры - квазиимпульс, эффективная масса, кинетическая энергия и т.д. - определяются свойствами кристаллической решетки. Такую частицу часто называют квазиэлектроном, электроном-квазичастицей, носителем отрицательного заряда или носителем заряда n-типа , чтобы подчеркнуть ее отличие от реального электрона.

    Особенности эффективной массы электрона связаны с видом дисперсионного соотношения электрона в кристалле (рис.2.10). Для электронов, располагающихся у дна энергетической зоны, дисперсионное соотношение можно приблизительно описать параболическим законом

    Вторая производная , следовательно, эффективная масса положительная. Такие электроны ведут себя во внешнем электрическом поле подобно свободным электронам: они ускоряются под действием внешнего электрического поля. Отличие таких электронов от свободных состоит в том, что их эффективная масса может существенно отличаться от массы свободного электрона. Для многих металлов, в которых концентрация электронов в частично заполненной зоне мала и они располагаются вблизи ее дна, электроны проводимости ведут себя подобным образом. Если к тому же эти электроны слабо связаны с кристаллом, то их эффективная масса незначительно отличается от массы покоя реального электрона.

    Для электронов, находящихся у вершины энергетической зоны (рис.2.10), дисперсионное соотношение можно приблизительно описать параболой вида

    и эффективная масса является величиной отрицательной. Такое поведение эффективной массы электрона объясняется тем, что он при своем движении в кристалле обладает не только кинетической энергией поступательного движения Е к , но и потенциальной энергией его взаимодействия с кристаллической решеткой U . Поэтому часть работы A внешней силы может перейти в кинетическую энергию и изменить ее на величину E к , другая часть - в потенциальную U .

    © 2005-2017, HOCHU.UA