Войти
Русь. История России. Современная Россия
  • Что изучает социальная психология
  • Океан – наше будущее Роль Мирового океана в жизни Земли
  • Ковер из Байё — какие фильмы смотрели в Средние века
  • Библиотека: читающий малыш
  • Всадник без головы: главные герои, краткая характеристика
  • 3 стили речи. Стили текста. Жанры текста в русском языке. §2. Языковые признаки научного стиля речи
  • Диффузионный потенциал. Трансмембранный градиент концентрации калия. Концентрационный градиент натрия (Na), как движущая сила мембранного транспорта D – коэффициент диффузии

    Диффузионный потенциал. Трансмембранный градиент концентрации калия. Концентрационный градиент натрия (Na), как движущая сила мембранного транспорта D – коэффициент диффузии

    Здравствуйте! Согласно определению, градиент концентрации направлен из стороны меньшей концентрации в сторону большей. Поэтому про диффузию всегда говорят, что она направлена против градиента концентрации, т.е. из стороны с большей концентрации в сторону меньшей.
    Однако, когда читаешь литературу про жизнедеятельность клетки, фотосинтез, в ней всегда говорится, что "по градиенту концентрации" - это в сторону уменьшения концентрации, а "против градиента концентрации"- в сторону увеличения концентрации и, таким образом, например, простая диффузия в клетках (или, иначе, обычная диффузия) направлена по градиенту концентрации.
    Но ведь возникает противоречие. Получается, что выражение "по градиенту концентрации" на самом деле есть движение противное направлению градиенту концентрации. Как такое может быть?

    Эта устойчивая и широко распространенная ошибка связана с различием в понимании направления вектора градиента концентрации в физике и биологии. Биологи предпочитают говорить о направлении вектора градиента концентрации от большего к меньшему значению, а физики от меньшего к большему.

    Предметная область: полимеры, синтетические волокна, каучук, резина

    Наглядно представить образование в суспензии такого градиента концентрации довольно трудно, благодаря влиянию молекул растворителя. Явление это можно сравнить с поведением смеси двух газов при постоянных температуре и давлении, но с градиентом концентрации того и другого компонента. Рассмотрим плоскость, проведенную через такую газовую смесь перпендикулярно направлению градиента концентрации. Предположим, что концентрация компонента А выше в левой части плоскости и ниже в правой; распределение компонента В должно быть обратное. В единицу времени в левой части плоскости должно приходить в столкновение большее число молекул А, чем в правой; для молекул В справедливо обратное. Следовательно, больше молекул А будет проходить через плоскость слева направо и подобным же образом больше молекул В будет двигаться справа налево. В результате наступит уравнивание концентраций двух компонентов. Этот процесс представляет собой диффузию газов. Если теперь перейти к жидкой суспензии, в которой существует подобный же градиент концентрации взвешенных частичек, то ясно, что можно повторить предыдущее рассуждение, приложив его к движению твердых частичек и молекул растворителя через плоскость, проведенную под прямым углом к градиенту концентрации . Однако общее число частичек в единице объема не остается постоянным, и рассуждение соответственно следует изменить. Ясно, что число молекул растворителя, пересекающих плоскость в направлении от места с высокой концентрацией взвешенных частичек, будет меньше, чем в обратном направлении из-за присутствия частичек, преграждающих путь.

    Закон Фика для диффузии в одном направлении связывает положительный поток частиц А с отрицательно направленным градиентом концентрации (постоянная плотность и малая концентрация частиц):

    Как отмечалось выше, электроактивные вещества достигают поверхности электрода в результате: 1) диффузии, обусловленной градиентом концентрации между поверхностью электрода и объемом раствора, и 2) электрической миграции заряженных частиц, обусловленной градиентом потенциала между электродом и раствором. Этот миграционный ток необходимо исключить или уменьшить насколько возможно добавлением большого избытка инертного электролита, который не участвует в реакции на электроде. Возникающий при этом предельный ток будет только диффузионным током. Для того чтобы можно было исключить миграционный ток, концентрация инертного электролита должна быть по крайней мере в 50 раз больше концентрации электроактивного вещества.

    При идеальном диффузионном токе электроактивное вещество достигает электрода только в результате диффузии, обусловленной градиентом концентрации, возникающим вследствие убыли вещества на электроде. Этот градиент существует на протяжении диффузионного слоя, где концентрация меняется от практически нулевой на поверхности электрода до концентрации, существующей в объеме раствора. Диффузионный ток можно определить по высоте волны на кривой сила тока - напряжение.

    Основные законы диффузии были, как известно сформулированы Фиком. Первый закон Фика устанавливает связь между скоростью диффузионного потока / и градиентом концентрации С по расстоянию х от по-

    Так как влага может быть удалена из глиняных изделий только путем испарения с поверхности, а из внутренних частей продвигается наружу только под действием силы, связаннойс градиентом концентрации *, то полное устранение усадочной деформации при сушке невозможно. Она может быть, однако, сведена к минимуму при достаточной продолжительности сушки и при соответствующем контроле температуры и влажности, необходимом для устранения неравномерного распределения влаги на поверхности. Такой контроль вместе с тепловым режимом лучше всего достигается при использовании противоточных сушилок, преимущественно туннельного типа. Чем более пластична смесь и более сложна форма, тем более тщательна должна быть сушка **.

    При экстрагировании полимерного образца жидкостью с постепенно возрастающей растворяющей способностью в первую очередь растворяются более низкомолекулярные части, а потом остальные Улучшение растворяющей способности достигается путем изменения температуры или состава экстрагирующей жидкости Особенно хорошие результаты получаются при применении колонны с градиентом концентрации и температуры, когда происходит многократное растворение и осаждение полимера

    При скорости вращения (4-6)-104 об/мин в ультрацентрифуге развивается центробежное ускорение, равное ~106 g. При таких проведения эксперимента - наблюдение за неравновесным процессом седиментации - называют скоростной седиментацией. Измерение положения границы 16 и ее смещения во времени проводится с помощью оптических схем (см. стр. 160), что позволяет рассчитать коэффициент седиментации : „ _ \ Лт_ _ 1 d In r

    Вследствие теплового движения макромолекул в растворе происходит перемещение (диффузия) растворенного вещества в направлении от большей концентрации к меньшей. Если осторожно "наслоить" на поверхность раствора полимера с концентрацией С\ растворитель (Со), то постепенно граница раздела А-А будет размываться (рис. 1.11). Молекулы растворителя будут диффундировать в направлении х в раствор, а макромолекулы - в противоположном направлении , в слой растворителя. Изменение концентрации на отрезке dx называется градиентом концентрации. Скорость изменения концентрации в результате диффузии (скорость диффузии) описывается соотношением

    При контакте катеонита вида (НМ)ж с разбавленным раствором сильного электролита М+А~ величина [М+] в ионите будет значительно больше, чем [М+] в растворе, а [А~~] - меньше [А~]. Вследствие того, что концентрация их в двух фазах различна, небольшие подвижные ионы будут стремиться выравнивать ее путем диффузии, а это приведет к нарушению электронейтральности раствора, к возникновению положительного пространственного заряда в растворе и отрицательного в ионите. В результате установится равновесие Доннана между градиентом концентрации, вызванным диффузией, и электростатическим потенциалом, препятствующим ей, и на границе катионит-раствор (рис. 191) Рис. 191. Схема распределения заря-возникнет разность потенциалов - доннановский потенциал

    Диффузионные явления при формировании системы адгезив - субстрат весьма разообразны. К ним относятся поверхностная диффузия адгезива, самодиффузия в слое адгезива, иногда происходит объемная одно- или двусторонняя диффузия через границу раздела адгезив - субстрат. Кроме того, перечисленные процессы имеют различные механизмы . Например, различают активированную, полуактивированную и неактивированную диффузию. Ниже эти различные процессы будут рассмотрены более подробно. >> Часто полагают, что движущей силой диффузии является градиент концентрации. Однако перемещение, вызванное градиентом концентрации и приводящее к постепенной гомогенизации системы, не исчерпывает все возможные проявления этого сложного процесса. Весьма часто при диффузии происходит не выравнивание концентраций, а, наоборот, дальнейшее разделение компонентов системы. Поэтому более правильно считать, что движущей силой диффузии является разность термодинамических потенциалов, и перенос вещества путем диффузии сопровождается понижением свободной энергии системы. Выравнивание термодинамических потенциалов и приближение к термодинамическому равновесию достигается за счет теплового движения атомов (молекул). Термодинамический потенциал можно разложить на энергетическую и энтропийную составляющие. Механизм диффузии зависит от соотношения этих составляющих. В некоторых случаях внутренняя энергия системы при диффузии не изменяется, и

    Что такое концентрация? Если говорить в широком смысле, то это соотношение объема вещества и количества растворенных в нем частиц. Данное определение встречается в самых разнообразных отраслях науки, начиная от физики и математики, заканчивая философией. В данном случае, идет речь об употреблении понятия «концентрация» в биологии и химии.

    Градиент

    В переводе с латыни, это слово означает «растущий» или «шагающий», то есть это некий «указующий перст», который показывает направление, в котором возрастает любая величина. В качестве примера можно использовать, допустим, высоту над уровнем моря в разных точках Земли. Ее (высоты) градиент в каждой отдельной точке на карте будет показывать вектор увеличения значения до достижения самого крутого подъема.

    В математике этот термин появился только в конце девятнадцатого века. Его ввел Максвелл и предложил свои обозначения этой величины. Физики используют данное понятие для того, чтобы описывать напряженность электрического или гравитационного поля, изменение потенциальной энергии.

    Не только физика, но и другие науки используют термин «градиент». Это понятие может отражать как качественную, так и количественную характеристику вещества, например, концентрацию или температуру.

    Градиент концентрации

    Теперь известно, а что такое концентрация? Это которая показывает долю вещества, содержащегося в растворе. Она может высчитываться в виде процента от массы, количества молей или атомов в газе (растворе), доли от целого. Такой широкий выбор дает возможность выразить практически любое соотношение. И не только в физике или биологии, но и в метафизических науках.

    А в общем, градиент концентрации является которая одновременно дает характеристику количеству и направлению изменения вещества в среде.

    Определение

    Можно ли подсчитать градиент концентрации? Формула его представляет собой частность между элементарным изменением концентрации вещества и длинной пути, который придется преодолеть веществу для достижения равновесия между двумя растворами. Математически это выражается формулой С = dC/dl.

    Наличие градиента концентрации между двумя веществами является причиной их смешивания. Если частицы движутся из области с большей концентрацией в меньшую, то это называется диффузией, а если между ними находится полупроницаемое препятствие - осмосом.

    Активный транспорт

    Активный и пассивный транспорт отражает движение веществ через мембраны или слои клеток живых существ: простейших, растений, животных и человека. Этот процесс проходит с использованием тепловой энергии, так как переход веществ осуществляется против градиента концентрации: от меньшего к большему. Наиболее часто для осуществления такого взаимодействия используется аденозинтрифосфат или АТФ - молекула, которая является универсальным источником энергии в 38 Джоулей.

    Существуют разные формы АТФ, которые располагаются на мембранах клеток. Энергия, заключенная в них, высвобождается при переносе молекул веществ через так называемые насосы. Это поры в клеточной стенке, которые выборочно поглощают и откачивают ионы электролитов. Кроме того, существует такая модель транспорта как симпорт. В этом случае одновременно транспортируется два вещества: одно выходит из клетки, а другое в нее попадает. Это позволяет сэкономить энергию.

    Везикулярный транспорт

    Активный и включает в себя транспортировку веществ в виде пузырьков или везикул, поэтому процесс называется, соответственно, везикулярным транспортом. Выделяют два его вида:

    1. Эндоцитоз. В этом случае пузырьки образуются из мембраны клеток в процессе поглощения ею твердых или жидких веществ. Везикулы могут быть гладкими или иметь каемку. Такой способ питания имеют яйцеклетки, белые клетки крови, а также эпителий почек.
    2. Экзоцитоз. Исходя из названия, это процесс противоположный предыдущему. Внутри клетки есть органеллы (например, аппарат Гольджи), которые «упаковывают» вещества в пузырьки, а они, в последующем, выходят через мембрану.

    Пассивный транспорт: диффузия

    Движение по градиенту концентрации (от высокой к низкой) происходит без использования энергии. Выделяют два варианта пассивного транспорта - это осмос и диффузия. Последняя бывает простой и облегченной.

    Основное отличие осмоса в том, что процесс перемещения молекул происходит через полупроницаемую мембрану. А диффузия по градиенту концентрации происходит в клетках, имеющих мембрану с двумя слоями липидных молекул. Направление транспорта зависит только от количества вещества с обеих сторон мембраны. Этим способом в клетки проникают полярные молекулы, мочевина, и не могут проникнуть белки, сахара, ионы и ДНК.

    В процессе диффузии, молекулы стремятся заполнить весь доступный объем, а так же выровнять концентрацию по обе стороны мембраны. Бывает так, что мембрана непроницаема или плохо проницаема для вещества. В этом случае на нее воздействуют осмотические силы, которые могут как сделать преграду плотнее, так и растянуть ее, увеличив размеры насосных каналов.

    Облегченная диффузия

    Когда градиент концентрации не является достаточным основанием для транспорта вещества, на помощь приходят специфические белки. Они располагаются на мембране клеток точно так же, как и молекулы АТФ. Благодаря ним, может осуществляться как активный, так и пассивный транспорт.

    Таким способом через мембрану проходят крупные молекулы (белки, ДНК), полярные вещества, к которым относятся аминокислоты и сахара, ионы. Благодаря участию белков скорость транспорта увеличивается в несколько раз, по сравнению с обычной диффузией. Но это ускорение зависит от некоторых причин:

    • градиента вещества внутри и вне клетки;
    • количества молекул-переносчиков;
    • скорости связывания вещества и переносчика;
    • скорости изменения внутренней поверхности мембраны клетки.

    Несмотря на это, транспорт осуществляется благодаря работе белков-переносчиков, а энергия АТФ в данном случае не используется.

    Основными чертами, которые характеризуют облегченную диффузию, являются:

    1. Быстрый перенос веществ.
    2. Избирательность транспорта.
    3. Насыщаемость (когда все белки заняты).
    4. Конкуренция между веществами (из-за сродства с белком).
    5. Чувствительность к специфическим химическим агентам - ингибиторам.

    Осмос

    Как уже упоминалось выше, осмос - это движение веществ по градиенту концентрации через полупроницаемую мембрану. Наиболее полно процесс осмоса описывает принцип Лешателье-Брауна. В нем говорится, что если на систему, находящуюся в равновесии, повлиять извне, то она будет стремиться вернуться в прежнее состояние. Первый раз с явлением осмоса столкнулись в середине XVIII столетия, но тогда ему не придали особого значения. Исследования феномена начались только сто лет спустя.

    Самым важным элементом в феномене осмоса является полупроницаемая мембрана, которая пропускает через себя только молекулы определенного диаметра или свойств. Например, в двух растворах с разной концентрацией, через преграду будет проходить только растворитель. Это будет продолжаться до тех пор, пока концентрация с обеих сторон мембраны не станет одинаковой.

    Осмос играет значительную роль в жизни клеток. Это явление позволяет проникать в них только тем веществам, которые необходимы для поддержания жизни. Красная клетка крови имеет мембрану, пропускающую только воду, кислород и питательные вещества, но белки, которые, образуются внутри эритроцита, не могут попасть наружу.

    Явление осмоса нашло и практическое применение в быту. Даже не подозревая об этом, люди в процессе засаливания пищи использовали именно принцип движения молекул по градиенту концентрации. Насыщенный солевой раствор «вытягивал» на себя всю воду из продуктов, тем самым позволяя им дольше храниться.

    Разного диаметра (см. текст)

        Растворы для формирования ступенчатого градиента плотности сахарозы (состав растворов см. 3.1). 

    Вещества, используемые для формирования градиента плотности. Для формирования градиента плотности необходимо иметь инертные, нетоксичные и быстрорастворимые в воде и солевых растворах вещества. Эти вещества должны обладать большим молекулярным весом и высокой плотностью при низкой вязкости . Высокая плотность градиентного раствора необходима для того, чтобы можно было формировать крутой градиент, а низкая вязкость градиента способствует более быстрой седиментации частиц , быстрому установлению равновесия и упрощает процедуру фракционирования содержимого градиентной пробирки. При анализе фракций эти вещества не должны мешать определению содержания белка и измерению поглощения в ультрафиолетовой области . И главное требование эти вещества должны быть индифферентны к вирусным частицам. 


        Наиболее часто для формирования градиентов плотности используется сахароза, по своим свойствам соответствующая указанным выще требованиям. Кроме того, она дешева и ее раствор обладает определенной вязкостью , способствующей стабилизации зон в то же время эта вязкость не настолько высока, чтобы препятствовать движению заряженных молекул и частиц. Для этой же цели можно применять и другие вещества , например глицерин, этиленгликоль, тяжелую воду и в ограниченном диапазоне концентраций этанол. 

    Если диаметр резервуара меньше диаметра смеситель (рис. 52, 2), то начальные изменения плотности относительно невелики и градиент начинается более полого, чем линейный. Это будет компенсировано резким изменением плотности в конце формирования градиента . Теперь ситуация становится обратной. Вогнутый градиент с резким нарастанием плотности в области высоких ее значений образуется в том случае, если в резервуаре находится более плотный раствор сахарозы (в). Вносить его в пробирку можно только на дно, через иглу шприца. 

    Растворы для формирования градиента плотности сахарозы а) 0,8 М сахарозы, 50 мМ хлорида натрия , 50 мМ трис-НС1 буфера при рН=7,8, 2 мМ хлорида магния б) 1,0 М сахарозы, 50 мМ хлорида натрия , 50 мМ трис-НС1 буфера при pH=7,8, 2 мМ хлорида магния в) 1,5 М сахарозы, 50 мМ хлорида натрия , 50 мМ трис-НС1 буфера при pH=7,8, 2 мМ хлорида магния. 

    Андерсон описал устройство применяемое для формирования градиента (рис, 19). Прибор СОСТОИТ из двух шприцев, содержащих два раствора различной плотности . Шприцы присоединены общим выводным капилляром, где происходит смешивание растворов . Капиллярную трубку опускают в центрифужную про-бирку. При постоянной скорости поршней в шприцах концентрация сахарозы в растворе, оттекающем из устройства изменяется линейно со временем. При этом в центрифужной пробирке создается линейный градиент сахарозы. Такой сформированный градиент стабилен в течение нескольких часов. Кроме линейного градиента , такое устройство может формировать градиенты других форм при помощи кулачков различной формы которые изменяют скорость движения поршней по любой заданной программе . Эти различные формы градиента можно использовать ддя разделения смесей , содержащих компоненты с различной скоростью седиментации или плотностью. Например, если смесь содержит три компонента плотностью 1,12, 1,14, 1,25 г/мл, идеальный градиент в этом случае должен иметь 8-форму. Он должен быть пологим в зоне плотности от 1,10 до 1,16 г/мл, чтобы первые два компонента, близкие по плотности, достаточно хорошо отделились за определенное время . Затем градиент должен быть крутым в зоне плотности от 1,16 до 1,30 г/мл, чтобы третий компонент расположился на некотором расстоянии от дна пробирки. 

        Время сохранения преформированного градиента в таких неравновесных условиях должно зависеть от длины пробирки, подобно тому как от нее зависит время формирования градиента . Действительно, можно показать, что в центральной трети пробирки преформированный градиент любого профиля сохранится неизменным в течение времени /о=0,15 - (в часах). Для нормального случая истинно равновесного центрифугирования, независимо от использования преформирования, скорость вращения выбранного ротора однозначно определяется заданным интервалом плотностей градиента Др. Приведенную выше формулу для Др в практических целях можно переписать, выразив угловую скорость вращения ротора

    Стремление выращивать монокристаллы с малой плотностью дислокаций, или вообще бездислокацион -ные, способствовало к появлению большого числа приемов, направленных на достижение этих целей. Идея этих приемов главным образом сводится к снижению тепловых потоков с поверхности кристалла , уменьшению радиальных градиентов температуры , т. е. формированию плоского фронта кристаллизации . Такое направлепие не случайно. Большинство работ, посвященных вопросу выращивания монокристаллов с малой плотностью дислокаций , указывают именно на необходимость создания условий, обеспечивающих плоский фронт кристаллизации. 

    Рис. 9. Прибор для электрофореза в градиенте) плотности в начале электрофоретического разделения . А, Л-образная трубка . Б. Составные части поршня. 1 - аппарат для создания градиента плотности 2 - двухходовой кран 5 -трехходовой кран - пластмассовый шприц для вне сения пробы 5 - пропускание воздуха для перемешивания раствора при формировании градиента 6 - ось редуктора, понижающего число оборотов мотора 7-нитка 8 - анодная платиновая спираль Р -градиент -поршень /7 -проба в выбранном положении /2 - насыщенный раствор сахарозы 75 -пробка из полиакриламидного геля 74 - насыщенный раствор хлористого натрия /5 - катод 75 -водяная рубашка для термостатировання 77-пластмассовая трубка 75 -зубчатая насечка 7Р -пробка из полиакриламида или агарозы 20 - уплотнительное кольцо 21 - наконечник для присоединения пластмассовой трубки.
        Одна из особенностей высокотемпературной кристаллизации состоет в том, что окончательное формирование реальной структуры монокристаллов не завершается актом фазового перехода . В условиях высоких температур и критических по величине температурных градиентов интенсивно протекают всевозможные процессы. Среди них важное место занимают процессы, связанные с остаточными термоупругими напряжениями и их релаксацией (в результате пластической деформации монокристаллов). Кроме того, в высокоградиентном температурном поле возможны и процессы переноса вещества , а , связанные с кристаллизацией вещества во включениях, содержащих расплав нестехиометрического состава. Не исключены и твердофазные химические реакции , влияющие на плотность точечных дефектов , а также на валентное состояние отдельных компонентов вещества и примесей. 

    В 1961 г. в журнале Nature были опубликованы работы двух групп авторов, сыгравшие исключительную роль в формировании современных представлений о процессах биосинтеза белка. В обоих случаях было использовано препаративное ультрацентрифугирование в одном из них компоненты бесклеточнои системы разделяли в градиенте плотности хлористого цезия , в другом использовали градиенты концентрации сахарозы. 

    Сила / положительна, если х отрицательно, и наоборот, на основании чего можно сделать вывод, что полимерные молекулы стремятся собраться при г = Го х = 0). В большинстве опытов исходное распределение растворителей и полимера однородное и формирование градиента плотности происходит одновременно с образованием полосы полимера. Это сложный процесс , характер которого зависит от скоростей различных седиментационных процессов. Представляет интерес рассмотре ть гипотетический случай , когда градиент плотности был установлен до того, как началась седиментация полимера . Практически примерно так обстоит дело в тех системах, в которых скорость образования градиента плотности высока по сравнению со скоростью образования полосы полимера . Теперь рассмотрим, что будет происходить с полимером под действием силы /, выражаемой уравнением (X111-3), если исходное распределение полимера было однородным в широком интервале значений (рис. 290). В предположении, что уравнение (XII1-3) применимо во всем интересующем нас интервале, можно считать , что каждая полимерная молекула подвергается действию силы , пропорциональной расстоянию от центра л = 0. На ранних стадиях процесса влияние диффузии будет незначительно, за исключением краев Р и Q, так как только в этих точках имеется градиент концентра- 

    Рис. 1.9. Формирование зон плазмидной и хромосомной ДНК в градиенте плотности s l. В УФ свете сфотографирована центрифужная пробирка , в которой произошло разделение плазмидной и хромосомной ДНК

    Dx- градиент концентрации,

    T – абсолютная температура

    M моль

    Jm = ––- ––––(- ––––) ; m - количество вещества

    S × t м с Jm - (джей) плотность потока вещества.

    Электрохимический потенциал –- величина, равная энергии Гиббса G на один моль данного вещества, помещенного в электрическом поле.

    Свободная энергия Гиббса (или просто энергия Гиббса, или потенциал Гиббса, или термодинамический потенциал в узком смысле) - это величина, показывающая изменение энергии в ходе химической реакции и дающая таким образом ответ на вопрос о принципиальной возможности протекания химической реакции; это термодинамический потенциал следующего вида:

    G = U + PV TS

    где U - внутренняя энергия, P- давление, V- объём, T - абсолютная температура, S - энтропия.

    (Термодинамическая энтропия S, часто просто именуемая энтропия, в химии и термодинамике является функцией состояния термодинамической системы)

    Энергию Гиббса можно понимать как полную химическую энергию системы (кристалла, жидкости и т. д.)

    Понятие энергии Гиббса широко используется в термодинамике и химии.

    Термодинамическая энтропия S, часто просто именуемая энтропия, в химии и термодинамике является функцией состояния термодинамической системы.

    Для разбавленных растворов плотность потока вещества определяется уравнением Нернста-Планка.

    d × C d ×φ

    Jm= U ×R×T ––––- U×C×Z×F ––––- ;

    d × x d × x

    U подвижность частиц,

    R- газовая постоянная 8,31 дж/моль,

    dC

    z заряд иона электролита,

    F-число Фарадея 96500 кг/ моль,

    dφ-потенциал электрического поля,

    d φ

    Существуют две причины переноса вещества при пассивном транспорте:градиент концентрации и градиент электрического потенциала . (Знаки минус перед градиентом показывают, что градиент концентрации вызывает перенос вещества от мест с большей концентрации к местам с меньшей концентрацией). Градиент электрического потенциала вызывает перенос положительных зарядов от мест с большим, к местам с меньшим потенциалом.

    Может происходить пассивный перенос веществ от мест с меньшей концентрацией к местам большей концентрацией, (если второй член уравнения по модулю больше первого).

    Если не электролиты Z=0 ; или отсутствует электрическое поле, то происходит простая диффузия – закон Фика.

    Jm = - D × ––––;

    D – коэффициент диффузии;

    - - ––– градиент концентрации;

    Диффузия – самопроизвольное перемещение веществ из мест с большей концентрацией в места с меньшей концентрацией вещества, вследствие хаотичного теплового движения молекул.


    Диффузия вещества через липидный бислой вызывается градиентом концентрации в мембране. Коэффициент проницаемости мембраны зависит от свойств мембраны и переносимых веществ. (Если концентрации вещества у поверхности в мембране прямо пропорциональны концентрациям у поверхности вне мембраны).

    P = - - ––- коэффициент проницаемости

    K коэффициент распределения, который показывает соотношение концентрации вещества вне мембраны и внутри ее.

    L толщина мембраны;

    D – коэффициент диффузии;

    Коэффициент проницаемости тем больше, чем больше коэффициент диффузии (чем меньше вязкость мембраны), чем тоньше мембрана и чем лучше вещество растворяется в мембране.

    Хорошо проникают через мембрану неполярные вещества – органические жирные кислоты, плохо – полярные водорастворимые вещества: соли, основания, сахара, аминокислоты.

    При тепловом движении образуются небольшие свободные плоскости между хвостами – называются клинки, через которые могут проникать полярные молекулы. Чем больше размер молекулы, тем меньше проницаемость мембраны для этого вещества. Избирательность переноса обеспечивается набором в мембране пор определенного радиуса, соответствующих размеру проникающей частицы.

    Облегченная диффузия – происходит при участии молекул переносчиков. Переносчик ионов калия – валиномицин, который имеет форму манжетки; устлан внутри полярными группами, а снаружи –неполярными. Характерна высокая избирательность. Валиномицин образует комплекс с ионами калия, которые попадают внутрь манжетки, а также он растворим в липидной фазе мембраны, так как снаружи его молекула неполярна.

    Молекулы валиномицина у поверхности мембраны захватывают ионы калия и переносят его через мембрану. Перенос может происходить в обе стороны.

    Облегченная диффузия происходит от мест с большей концентрацией переносимого вещества к местам с меньшей концентрацией.

    Отличия облегченной диффузии от простой:

    1) перенос вещества с переносчиком происходит быстрее.

    2) Облегченная диффузия обладает свойством насыщения, при увеличении концентрации с одной стороны мембраны, плотность потока возрастает до тех пор пока все молекулы переносчика не будут заняты

    3) При облегченной диффузии наблюдается конкуренция переносимых веществ, когда переносчиком переносятся разные вещества; при этом одни вещества переносятся лучше чем другие и добавление одних веществ затрудняет транспорт др. Так из сахаров глюкоза переносится лучше чем фруктоза, фруктоза лучше, чем ксилоза, а ксилоза, лучше чем арабиноза.

    4) Есть вещества, блокирующие облегченную диффузию – они образуют прочный комплекс с молекулами переносчик. Неподвижные молекулы – переносчики, фиксированные поперек мембраны передаются от молекулы к молекуле.

    Фильтрация- движение раствора через поры в мембране под действием градиента давления. Скорость переноса при фильтрации подчиняется закону Пуазейля.

    D v P1 – P2

    - –– = - ––––––;