Войти
Русь. История России. Современная Россия
  • Что изучает социальная психология
  • Океан – наше будущее Роль Мирового океана в жизни Земли
  • Ковер из Байё — какие фильмы смотрели в Средние века
  • Библиотека: читающий малыш
  • Всадник без головы: главные герои, краткая характеристика
  • 3 стили речи. Стили текста. Жанры текста в русском языке. §2. Языковые признаки научного стиля речи
  • Бета окисление пальмитиновой кислоты. Окисление жирных кислот: процесс, особенности и формула. Отрывок, характеризующий Бета-окисление

    Бета окисление пальмитиновой кислоты. Окисление жирных кислот: процесс, особенности и формула. Отрывок, характеризующий Бета-окисление

    И дыхательной цепью , для преобразования энергии, заключенной в жирных кислотах, в энергию связей АТФ.

    Окисление жирных кислот (β-окисление)

    Элементарная схема β-окисления.


    Этот путь называется β-окислением, так как происходит окисление 3-го углеродного атома жирной кислоты (β-положение) в карбоксильную группу, одновременно от кислоты отщепляется ацетильная группа, включающая С 1 и С 2 исходной жирной кислоты.

    Реакции β-окисления происходят в митохондриях большинства клеток организма (кроме нервных клеток). Для окисления используются жирные кислоты, поступающие в цитозоль из крови или появляющиеся при липолизе собственных внутриклеточных ТАГ . Суммарное уравнение окисления пальмитиновой кислоты выглядит следующим образом:

    Пальмитоил-SКоА + 7ФАД + 7НАД + + 7Н 2 O + 7HS-KoA → 8Ацетил-SКоА + 7ФАДН 2 + 7НАДН

    Этапы окисления жирных кислот

    Реакция активации жирной кислоты.


    1. Прежде, чем проникнуть в матрикс митохондрий и окислиться, жирная кислота должна активироваться в цитозоле. Это осуществляется присоединением к ней коэнзима А с образованием ацил-S-КоА. Ацил-S-КоА является высокоэнергетическим соединением. Необратимость реакции достигается гидролизом дифосфата на две молекулы фосфорной кислоты.

    Карнитин-зависимый транспорт жирных кислот в митохондрию.


    2. Ацил-S-КоА не способен проходить через митохондриальную мембрану, поэтому существует способ его переноса в комплексе с витаминоподобным веществом карнитином. На наружной мембране митохондрий имеется фермент карнитин-ацилтрансфераза I.

    Карнитин синтезируется в печени и почках и затем транспортируется в остальные органы. Во внутриутробном периоде и в первые годы жизни значение карнитина для организма чрезвычайно велико. Энергообеспечение нервной системы детского организма и, в частности, головного мозга осуществляется за счет двух параллельных процессов: карнитин-зависимого окисления жирных кислот и аэробного окисления глюкозы . Карнитин необходим для роста головного и спинного мозга, для взаимодействия всех отделов нервной системы, ответственных за движение и взаимодействие мышц. Существуют исследования, связывающие с недостатком карнитина детский церебральный паралич и феномен «смерти в колыбели».

    3. После связывания с карнитином жирная кислота переносится через мембрану транслоказой. Здесь на внутренней стороне мембраны фермент карнитин-ацилтрансфераза II вновь образует ацил-S-КоА который вступает на путь β-окисления.

    Последовательность реакций β-окисления жирных кислот.


    4. Процесс собственно β-окисления состоит из 4-х реакций, повторяющихся циклически. В них последовательно происходит окисление (ацил-SКоА-дегидрогеназа), гидратирование (еноил-SКоА-гидратаза) и вновь окисление 3-го атома углерода (гидроксиацил-SКоА-дегидрогеназа). В последней, трансферазной, реакции от жирной кислоты отщепляется ацетил-SКоА. К оставшейся (укороченной на два углерода) жирной кислоте присоединяется HS-КоА, и она возвращается к первой реакции. Все повторяется до тех пор, пока в последнем цикле не образуются два ацетил-SКоА.

    Расчет энергетического баланса β-окисления

    При расчете количества АТФ, образуемого при β-окислении жирных кислот необходимо учитывать:

    • количество образуемого ацетил-SКоА - определяется обычным делением числа атомов углерода в жирной кислоте на 2;
    • число циклов β-окисления. Число циклов β-окисления легко определить исходя из представления о жирной кислоте как о цепочке двухуглеродных звеньев. Число разрывов между звеньями соответствует числу циклов β-окисления. Эту же величину можно подсчитать по формуле (n/2 −1), где n - число атомов углерода в кислоте;
    • число двойных связей в жирной кислоте. В первой реакции β-окисления происходит образование двойной связи при участии ФАД. Если двойная связь в жирной кислоте уже имеется, то необходимость в этой реакции отпадает и ФАДН 2 не образуется. Количество необразованных ФАДН 2 соответствует числу двойных связей. Остальные реакции цикла идут без изменений;
    • количество энергии АТФ, потраченной на активацию (всегда соответствует двум макроэргическим связям).

    Пример. Окисление пальмитиновой кислоты

    • так как имеется 16 атомов углерода, то при β-окислении образуется 8 молекул ацетил-SКоА. Последний поступает в ЦТК, при его окислении в одном обороте цикла образуется 3 молекулы НАДН, 1 молекула ФАДН 2 и 1 молекула ГТФ, что эквивалентно 12 молекулам АТФ (см также Способы получения энергии в клетке). Итак, 8 молекул ацетил-S-КоА обеспечат образование 8×12=96 молекул АТФ.
    • для пальмитиновой кислоты число циклов β-окисления равно 7. В каждом цикле образуется 1 молекула ФАДН 2 и 1 молекула НАДН. Поступая в дыхательную цепь, в сумме они «дадут» 5 молекул АТФ. Таким образом, в 7 циклах образуется 7×5=35 молекул АТФ.
    • двойных связей в пальмитиновой кислоте нет.
    • на активацию жирной кислоты идет 1 молекула АТФ, которая, однако, гидролизуется до АМФ, то есть тратятся 2 макроэргические связи или две АТФ.

    Таким образом, суммируя, получаем 96+35-2 =129 молекул АТФ образуется при окислении пальмитиновой кислоты.

    Окисление жирных кислот - это процесс распада жирных кислот, который протекает с выделением энергии. Из этой статьи ты узнаешь, почему данная химическая реакция чрезвычайно важна для нашего организма.

    Жирные кислоты образуются при расщеплении жиров. Такие жиры могут накапливаться в организме и использоваться в дальнейшем для получения энергии. Жирные кислоты необходимы человеческому организму, поскольку они участвуют в транспортировке кислорода кровеносной системой, укрепляют клеточные мембраны, а также обеспечивают слаженную работу всех органов и тканей. Жирные кислоты понижают холестерин, препятствуя образованию бляшек в артериях и снижая уровень триглицеридов. Также жирные кислоты предупреждают появление морщин, помогая сохранить кожу здоровой и упругой.

    Существует три типа жирных кислот: омега-3, омега-6 и омега-9. Омега-3 и омега-6 называют незаменимыми, потому что они помогают регулировать уровень липидов в крови. От этого зависит свертываемость крови и кровяное давление. Кроме того, незаменимые жирные кислоты стимулируют работу иммунной системы.

    Окисление жирных кислот и выделение энергии

    Главный источник энергии для организма — глюкоза. Если запас глюкозы исчерпан, начинается процесс расщепления запасов жирных кислот. Он протекает с выделением энергии. То же самое происходит и при расщеплении углеводов, однако жирные кислоты высвобождают больше энергии на один атом углерода.

    Организму важно расщеплять сохраненные жиры, поскольку иногда тело нуждается в энергии в тот момент, когда нет подходящего источника пищи, которую можно переработать.

    Нарушение окисления жирных кислот

    Организм некоторых людей не способен расщеплять накопленные жиры из-за нарушений в работе или отсутствия определенных ферментов. Часто это обусловлено генетическими факторами. Это означает, что, нуждаясь в энергии и не имея источника пищи, организм не может использовать жиры. В результате жирные кислоты не расщепляются и накапливаются в крови, а значит, жиры продолжают откладываться. Это может привести к серьезным проблемам со здоровьем.

    Наиболее часто причиной нарушений процесса окисления жирных кислот является дефицит карнитина. Карнитин — это аминокислота, которая транспортирует жирные кислоты в митохондрии, где они расщепляются, выделяя энергию. Карнитин также регулирует метаболизм, предотвращая понижение уровня сахара в крови и помогая выводить клеточные отходы, способные привести к интоксикации.

    Как увеличить количество жирных кислот в рационе

    Жирные кислоты содержатся в рыбе и некоторых растениях. Омега-3 и омега-6 жирные кислоты не синтезируются в нашем организме, поэтому их необходимо получать с пищей или принимать в виде пищевых добавок. Источниками жирных кислот являются лосось, тунец, макрель, семена льна, соевое и сафлоровое масла. В качестве пищевых добавок обычно принимают капсулы рыбьего жира.

    Статью подготовила : Ольга Позиховская

    Как уже указывалось, значительную часть энергии, извлекаемой в процессе окисления, животный организм получает из жирных кислот, которые расщепляются путем окисления при β-углеродном атоме.

    β-Окисление жирных кислот было впервые изучено в 19004 г. Ф. Кноопом. В дальнейшем было установлено, что β-окисление осуществляется только в митохондриях. Благодаря работам Ф. Линена с сотрудниками (1954-1958 г.г.) были выяснены основные ферментативные процессы окисления жирных кислот. В честь ученых, открывших данный путь окисления жирных кислот, процесс β-окисления получил название цикла Кноопа-Линена .

    β-Окисление - специфический путь ката­болизма жирных кислот, при котором от кар­боксильного конца жирной кислоты последо­вательно отделяется по 2 атома углерода в виде ацетил-КоА. Метаболический путь - β-окисление - назван так потому, что реакции окисле­ния жирной кислоты происходят у β-углеродного атома. Реакции β-окисления и последующего окисления ацетил-КоА в ЦТК (цикле трикарбоновых кислот) служат одним из основных источников энергии для синтеза АТФ по механизму окислительного фосфорилирования. β-Окисление жирных кислот происходит только в аэробных условиях.

    Все реакции многостадий­ного окисления ускоряются специфическими ферментами. β-окисление высших жирных кислот является универсальным биохи­мическим процессом, протекающим во всех живых организмах. У млекопитающих этот процесс происходит во многих тканях, в первую очередь в печени, почках и сердце. Окисление жирных кислот происходит в митохондриях. Ненасыщенные высшие жирные кислоты (олеиновая, линолевая, линоленовая и др.) предварительно восстанавливаются до предельных кислот.

    Проникновению жирных кислот в митохондриальный матрикс предшествует их активация путем образования соединения с коэнзимом А (НS~КоА), содержащего макроэргическую связь. Последняя, видимо, способствует более гладкому протека­нию реакций окисления образовавшегося соединения, которое называют ацилкоэнзимом А (ацил-КоА).

    Взаимодействие высших жирных кислот с КоА ускоряется специфическими лигазами - ацил-КоА-синтетазами трех видов, специфичных соответственно для кислот с коротким, средним и длин­ным углеводородными радикалами. Они локализованы в мембранах эндоплазматической сети и в наружной мембране митохондрий. По-видимому, все ацил-КоА-синтетазы являются мультимерами; так, фермент из микросом пе­чени имеет молекулярную массу 168 кДа и состоит из 6 идентичных субъеди­ниц. Реакция активации жирных кислот протекает в 2 этапа:

    а) сначала жирная кислота реагирует с АТФ с образаванием ациладенилата:

    RCOOH + ATФ → RCO~AMФ + ФФ

    б) затем идет образование активированной формы ацил-КоА:

    RCO~AMФ + НS~КоА → RCO~SKoA + AMФ

    Пирофосфат (ФФ) быстро гидролизуется под действием пирофосфатазы, в результате чего вся реакция оказывается необратимой: ФФ + H 2 O → 2Ф

    Суммарное уравнение :

    RCOOH + ATФ+ НS~КоА→ RCO~SKoA + AMФ + 2Ф

    Жирные кислоты с короткой и средней длиной цепи (от 4 до 12 атомов углерода) могут прони­кать в матрикс митохондрий путём диффузии, там происходит их активация. Жирные кислоты с длин­ной цепью, которые преобладают в организме человека (от 12 до 20 атомов углерода), активи­руются ацил-КоА синтетазами, расположенны­ми на внешней мембране митохондрий.

    Внутренняя мембрана митохондрий непроницаема для длинноцепочных ацил-КоА, образовавшихся в цитоплазме. Переносчиком активированных жирных кислот служит карнитин (витамин В т) , который поступает с пи­щей или синтезируется из незаменимых амино­кислот лизина и метионина.

    В наружной мембране митохондрий находится фермент карнитинацилтрансфераза I (карнитин-палъмитоилтрансфераза I), катализи- рующий ре­акцию с образованием ацилкарнитина:

    RCO~SKoA + H 3 C- N + -CH 2 -CH-CH 2 -COOH ↔ H 3 C- N + -CH 2 -CH-CH 2 -COOH + HS~KoA

    Ацил-КоА Карнитин (В т) Ацилкарнитин Кофермент А

    Этот фермент является регуляторным, он регулирует скорость поступления ацильных групп в митохондрии, а, следовательно, и скорость окисления жирных кислот.

    Образовавшийся ацилкарнитин проходит че­рез межмембранное пространство к наружной стороне внутренней мембраны и транспортиру­ется с помощью карнитинацилкарнитинтранслоказы на внутреннюю поверхность внутренней мембраны митохондрий, где фермент карнити­нацилтрансфераза II катализирует перенос ацила на внутримитохондриальный КоА, то есть обратную реакцию (рис.9).

    Рис.9. Перенос жирных кислот с длинным углеводородным радикалом через мембраны митохондрий

    Итак, ацил-КоА становится доступным для ферментов β-окисления. Свободный карни­тин возвращается на цитозольную сторону внутренней мембраны митохондрий той же транслоказой. После этого ацил-КоА включается в реак­ции β-окисления.

    В матриксе митохондрий происходит катаболизм (распад) ацил-КоА в результате повторяющейся последовательности из четырех реакций .

    1) Первой реакцией в каждом цикле является его окисление ферментом ацил-КоА-дегидрогеназой , коферментом которого является ФАД. Дегидрирование происходит между β - и α - атомами углерода, в результате чего в углеродной цепи образуется двойная связь и продуктом этой реакции является еноил-КоА:

    R-CH 2 -CH 2 CO~SKoA + ФАД → R-CH=CHCO~SKoA + ФАДН 2

    Ацил-КоА Еноил-КоА

    2) На втором этапе цикла окисления жирных кислот происходит гидратация двойной связи еноил-КоА, в результате чего образуется β-гидроксиацил-КоА. Реакция катализируется ферментом еноил-КоА-гидратазой :

    R-CH=CHCO~SKoA +Н 2 О → R-CH-CH 2 CO~SKoA

    Еноил-КоА β- гидроксиацил-КоА

    3) На третьем этапе цикла β-гидроксиацил-КоА подвергается дегидрированию (второму окислению) при участии фермента β-гидроксиацил-КоА-дегидрогеназы , коферментом которой является НАД + . Продуктом данной реакции является β-кетоацил-КоА:

    R-CH-CH 2 CO~SKoA + НАД + → R-CОCH 2 CO~SKoA + НАДН + Н +

    β- гидроксиацил-КоА β- кетоацил-КоА

    4) Последняя реакция цикла окисления жирных кислот катализируется ацетил-КоА-ацилтрансферазой (тиолазой) . На этом этапе β-кетоацил-КоА взаимодействует со свободным КоА и расщепляется с образованием, во-первых, двухуглеродного фрагмента, содержащего два концевых углеродных атома исходной жирной кислоты в виде ацетил-КоА, и, во-вторых, КоА-эфира жирной кислоты, укороченной теперь на два атома углерода. По аналогии с гидролизом эту реакцию называют тиолизом :

    R-CОCH 2 CO~SKoA + НS~KoA → CH 3 CO~SKoA + R 1 CO~SKoA

    β- кетоацил-КоА Ацетил-КоА Ацил-КоА ,

    укороченный на

    2 углеродных атома

    Укороченный ацил-КоА подвергается далее следующему циклу окисления, начинающемуся с реакции, катализируемой ацил-КоА-дегидрогеназой (окисление), затем следует реакция гидратации, реакция второго окисления, тиолазная реакция, то есть этот процесс многократно повторяется (рис.10).

    β- Окисление высших жирных кислот протекает в митохондриях. В них же ло­кализованы ферменты дыхательного цикла, ведущие передачу атомов водорода и электронов на кислород в условиях окислительного фосфорилирования АДФ, поэтому β-окисление высших жирных кислот является источником энергии для синтеза АТФ.

    Рис.10. Окисление жирной кислоты

    Окончательным про­дуктом β-окисления высших жирных кислот с четным числом углеродных атомов является ацетил-КоА , а с нечетным - пропионил-КоА .

    Если бы ацетил-КоА накапливался в организме, то запасы HS~KoA скоро исчер­пались бы, и окисление высших жирных кислот остановилось. Но этого не происхо­дит, так как КоА быстро освобождается из состава ацетил-КоА. К этому приводит ряд процессов: ацетил-КоА включается в цикл трикарбоновых и дикарбоновых кислот или весьма близкий к нему глиоксилевый цикл, или ацетил-КоА используется для синтеза стеролов и соединений, содержащих изопреноидные группировки и т.п.

    Пропионил-КоА, являющийся конечным продуктом β-окисления высших жирных кислот с нечетным числом углеродных атомов, превращается в сукцинил-КоА, который утилизируется через цикл трикарбоновых и дикарбоновых кислот.

    Около половины жирных кислот в организ­ме человека ненасыщенные .

    β-Окисление этих кислот идёт обычным путём до тех пор, пока двойная связь не окажется между третьим и чет­вёртым атомами углерода. Затем фер­мент еноил-КоА-изомераза перемещает двой­ную связь из положения 3-4 в положение 2-3 и изменяет цис-конформацию двойной связи на транс-, которая требуется для β-окисления. В этом цикле β-окисления первая реакция де­гидрирования не происходит, так как двойная связь в радикале жирной кислоты уже имеется. Далее циклы β-окисления продолжаются, не от­личаясь от обычного пути. Основные пу­ти метаболизма жирных кислот демонстрирует ри.11.

    Рис.11.Основные пу­ти метаболизма жирных кислот

    Не­давно было обнаружено, что помимо β-окисления – основного пути катаболизма жирных кислот, в тканях мозга происходит α-окисление жирных кис­лот с числом атомов углерода (С 13 -С 18), то есть последовательное отщепление одноуглеродных фрагментов от карбоксиль­ного конца молекулы.

    Этот тип окисления наиболее характерен для растительных тканей, но может происходить и в некоторых тканях животных. α-Окисление имеет циклический характер, причем цикл состоит из двух реакций.

    Первая реакция заключается в окислении жирной кислоты пероксидом водорода в соответствующий альдегид и СО 2 с участием специфической пероксидазы :

    В результате этой реакции углеводородная цепь укорачивается на один атом углерода.

    Суть второй реакции заключается в гидратации и окслении образовавшегося альдегида в соответствующую карбоновую кислоту под действием альдегиддегидрогеназы , содержащей окисленную форму кофермента НАД:

    Затем цикл α-окисления повторяется снова. В сравнении с β-окислением этот тип окисления энергетически менее выгоден.

    ω-Окисление жирных кислот. В печени животных и у некоторых микроорганизмов существует ферментная система, обеспечивающая ω-окисление жирных кислот, то есть окисление по концевой СН 3 -группе, обозначаемой буквой ω. Сначала под действием монооксигеназы происходят гидроксилирование с образованием ω-оксикислоты:

    Затем ω-оксикислота окисляется в ω-дикарбоновую кислоту под действием соответствующей дегидрогеназы :

    Полученная таким образом ω-дикарбоновая кислота укорачивается с любого конца с помощью реакций β-окисления.

    100 р бонус за первый заказ

    Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

    Узнать цену

    Жирными кислотами называют как предельные, так и непредельные высшие карбоновые кислоты, углеводородняая цепь которых содержит более 12 углеродных атомов. В организме окисление жирных кислот – чрезвычайно важный процесс, и оно может быть направлено на α, β и ω-углеродные атомы молекул карбоновых кислот. Среди этих процессов наиболее часто происходит β-окисление. Установлено, что окисление жирных кислот протекает в печени, почках, скелетных и сердечной мышцах, в жировой ткани. В мозговой ткани скорость окисления жирных кислот весьма незначительна; основным источником энергии в мозговой ткани служит глюкоза.

    В 1904 г. Ф. Кнооп (F. Knoop) выдвинул гипотезу β-окисления жирных кислот на основании опытов по скармливанию собакам различных жирных кислот, в которых один атом водорода в концевой метильной группе (ω-углеродного атома) был замещен радикалом (С6Н5–).

    Жирные кислоты, входящие в состав естественных жиров животных и растений, имеют четное число углеродных атомов. Любая такая кислота, от которой отщепляется по паре углеродных атомов, в конце концов проходит через стадию масляной кислоты. После очередного β-окисления масляная кислота становится ацетоуксусной. Последняя затем гидролизуется до двух молекул уксусной кислоты. Теория β-окисления жирных кислот, предложенная Ф. Кноопом, в значительной мере послужила основой современных представлений о механизме окисления жирных кислот.

    β-Окисление жирных кислот . Образующийся при гидролизе жиров карбоновые кислоты подвергаются β-окислению в митохондриях, куда они поступают в виде соответствующих ацилкоферментов А. β-Окисление – это 4 последовательных ОВР.

    І реакция. Дегидрирование

    // дегидрогеназа /

    С15Н31 – СН2 – СН2 – С + ФАД С = С + ФАД(2Н)

    ЅКоА Н СОЅКоА

    Стерилкоэнзим А трансизомер стерилкоэнзима А

    ІІ реакция Гидратация

    / гидратаза //

    С = С + Н2О С15Н31 – СН – СН2 – С

    Н СОЅКоА ОН ЅКоА

    Трансизомер стерилкоэнзима А L-изомер β-окисикарбоноврй кислоты

    ІІІ реакция Дегидрирование

    // дегидрогеназа //

    С15Н31 – СН – СН2 – С + НАД+ С15Н31 – С – СН2 – С + НАДН + Н+

    ОН ЅКоА О ЅКоА

    β-оксокислота

    ІV реакция. Расщепление

    // тиолаза // //

    С15Н31 – С – СН2 – С + НЅКоА С15Н31 – С СН3 – С

    О ЅКоА ЅКоА ЅКоА

    Пальмитокоэнзим А Ацетилкоэнзим А

    На новое в цикл Кребса для

    β-окисление окончательного

    окисления

    до СО2 и Н2О

    Четыре рассмотренные реакции процесса β-окисления представляют собой цикл, в ходе которого происходит укорочение углеродной цепи на два углеродных атома. Пальмитокоэнзим А вновь подвергается β-окислению, повторяя данный цикл. При β-окислении одной молекулы стеариновой кислоты образуется 40 молекул АТФ, а включая и цикл Кребса, котором окисляется образующийся ацетилкоэнзим А – 146 молекул АТФ. Это говорит о важности процессов окисления жирных кислот с точки зрения энергетики организма.

    α-Окисление жирных кислот. В растениях под действием ферментов происходит окисление жирных кислот по α-углеродному атому – α-окисление. Это цикл, состоящий из двух реакций.

    І реакция заключается в окислении жирной кислоты пероксидом водорода с участием соответствующей пероксидазы в соответствующий альдегид и СО2.

    Пероксидаза //

    R – СН2 – СООН + 2 Н2О2 R – С + СО2

    В результате этой реакции углеродная цепь укорачивается на один углеродный атом.

    ІІ реакция состоит в гидратации и окислении образующегося альдегида в соответствующую карбоновую кислоту под действием альдегидодегидрогеназы с окисленной формой НАД+:

    // альдегидо- //

    R – С + Н2О + НАД+ дегидрогеназа R – С + НАД(Н) + Н+

    Цикл α-окисления характерен только для растений.

    ω-Окисление жирных кислот. В печени животных и у некоторых микроорганизмов существует ферментная система, обеспечивающая ω-окисление, т.е. окисление по концевой СН3-группе. Сначала под действием монооксигеназы происходит гидроксилирование с образованием ω-оксикислоты:

    ω монооксигеназа

    СН3 – R – СООН + «О» НОСН2 – R – СООН

    НОСН2 – R – СООН + Н2О + 2НАД+ дегидрогеназа НООС– R – СООН + 2 НАД (Н) + 2Н+

    ω-дикарбоновая кислота

    Полученная ω-дикарбоновая кислота укорачивается с любого конца посредством реакции β-окисления.

    Если карбоновая кислота имеет разветвления, то её биологическое окисление прекращается, дойдя до места разветвления цепи.

    «Свободными жирными кислотами» (СЖК) называют жирные кислоты, находящиеся в неэстерифицированной форме; иногда их называют неэстерифицированными жирными кислотами (НЖК). В плазме крови длинноцепочечные СЖК образуют комплекс с альбумином, а в клетке - с белком, связывающим жирные кислоты, который называют Z-белком; фактически они никогда не бывают свободными. Короткоцепочечные жирные кислоты лучше растворяются в воде и находятся либо в виде неионизированной кислоты, либо в виде аниона жирной кислоты.

    Активация жирных кислот

    Так же как и в случае метаболизма глюкозы, жирная кислота прежде всего должна превратиться в активное производное в результате реакции, протекающей с участием АТР, и только после этого она способна взаимодействовать с ферментами, катализирующими дальнейшее превращение. В процессе окисления жирных кислот эта стадия является единственной, требующей энергии в виде АТР. В присутствии АТР и кофермента А фермент ацил-СоА-синтетаза (тиокиназа) катализирует превращение свободной жирной кислоты в «активную жирную кислоту» или ацил-СоА, которое осуществляется за счет расщепления одной богатой энергией фосфатной связи.

    Присутствие неорганической пирофосфатазы, которая расщепляет богатую энергией фосфатную связь в пирофосфате, обеспечивает полноту протекания процесса активации. Таким образом, для активации одной молекулы жирной кислоты в итоге расходуются две богатые энергией фосфатные связи.

    Ацил-СоА-синтетазы находятся в эндоплазмати-ческом ретикулуме, а также внутри митохондрий и на их наружной мембране. В литературе описан ряд ацил-СоА-синтетаз; они специфичны к жирным кислотам с определенной длиной цепи.

    Роль карнитина в окислении жирных кислот

    Карнитин является широко распространенным соединением,

    особенно много его в мышцах. Он образуется из лизина и метионина в печени и почках. Активация низших жирных кислот и их окисление могут происходить в митохондриях независимо от карнитина, однако длинноцепочечные ацил-СоА-производные (или СЖК) не могут проникать в митохондрии и окисляться, если предварительно не образуют ацилкарнитин-производных. На наружной стороне внутренней мембраны митохондрий имеется фермент карнитин-пальмитоилтрансфераза I, который переносит длинноцепочечные ацильные группы на карнитин с образованием ацилкарнитина; последний способен проникать в митохондрии, где находятся ферменты, катализирующие процесс (-окисления.

    Возможный механизм, объясняющий участие карнитина в окислении жирных кислот в митохондриях, приведен на рис. 23.1. Кроме того, в митохондриях находится другой фермент - карнитин-ацетилтрансфераза, который катализирует перенос короткоцепочечных ацильных групп между СоА и карнитином. Функция этого фермента пока не ясна.

    Рис. 23.1. Роль карнитина в переносе длинноцепочечных жирных кислот через внутреннюю мембрану митохондрий. Длиннопепочечный ацил-СоА не способен проходить через внутреннюю мембрану митохондрий, в то время как такой способностью обладает ацилкарнитин, образую цийся при Действии карнитин-пальмитонлтрансферазы I. Карнитин-ацилкарнитин-фанслоказа является транспортной системой. осуществляющей перенос молекулы ацилкарнитина через внутреннюю мембрану митохондрии, сопряженный с выходом мопскулы свободного карнитина. Затем при действии карнитин-пальмитоилтрансферазы 11, локализованной на внутренней поверхности внутренней мембраны митохондрии, ацилкарнитин взаимодействует с СоА. В результате в митохондриальном матриксе вновь образуется ацил-СоА. а карнитин высвобождается.

    Возможно,

    он облегчает транспорт ацетильных групп через мембрану митохондрий.

    b-Окисление жирных кислот

    Общее представление дает рис. 23.2. При 13-окислении жирных кислот 2 атома углерода одновременно отщепляются от карбоксильного конца молекулы ацил-СоА. Углеродная цепь разрывается

    Рис. 23.2. Схема -окисления жирных кислот.

    между атомами углерода в положениях , откуда и возникло название -окисление. Образующиеся двухуглеродные фрагменты представляют собой ацетил-СоА. Так, в случае пальмитоил-СоА образуется 8 молекул ацетил-СоА.

    Последовательность реакций

    Ряд ферментов, известных под общим названием «оксидазы жирных кислот», находятся в митохондриальном матриксе в непосредственной близости от дыхательной цепи, локализованной во внутренней мембране митохондрий. Эта система катализирует окисление ацил-СоА до ацетил-СоА, которое сопряжено с фосфорилированием ADP до АТР (рис. 23.3).

    После проникновения ацильного фрагмента через мембрану митохондрий при участии карнитиновой транспортной системы и переноса ацильной группы от карнитина на происходит отщепление двух атомов водорода от углеродных атомов в положениях катализируемое ацил-СоА-дегидрогеназои. Продуктом этой реакции является . Фермент представляет собой флавопротеин, его простетической группой служит FAD. Окисление последнего в дыхательной цепи митохондрий происходит при участии другого флавопротеина. названного электронпереносящим флавопротеином [см. с. 123). Далее происходит гидратация двойной связи, в результате чего образуется 3-гидроксиацил-СоА. Эта реакция катализируется ферментом А2-еноил-СоА-гидратазой. Затем 3-гидроксиацил-ОоА дегидрируется по 3-му атому углерода с образованием 3-кетоацил-СоА; эта реакция катализируется 3-гидроксиацил-СоА-дегидрогеназой при,участии в качестве кофермента NAD. 3-Кетоацил-СоА расщепляется между вторым и третьим атомами углерода 3-кетотиолазой или ацетил-СоА-ацнлтрансферазой с образованием ацетил-СоА- и ацил-СоА-производного, которое на 2 атома углерода короче исходной молекулы ацил-СоА. Это тиолитическое расщепление требует участия еще одной молекулы Образующийся укороченный ацил-СоА вновь вступает в цикл Р-окисления, начиная с реакции 2 (рис. 23.3). Таким путем длинноцепочечные жирные кислоты могут полностью расщепляться до ацетил-СоА (С2-фрагментов); последние в цикле лимонной кислоты, который протекает в митохондриях, окисляются до

    Окисление жирных кислот с нечетным числом атомов углерода

    b-Окисление жирных кислот с нечетным числом атомов углерода заканчивается на стадии образования трехуглеродного фрагмента - пропионил-СоА, который затем превращается в являющийся интермедиатом цикла лимонной кислоты (см. также рис. 20.2).

    Энергетика процесса окисления жирных кислот

    В результате переноса электронов по дыхательной цепи от восстановленного флавопротеина и NAD синтезируется по 5 богатых энергией фосфатных связей (см. гл. 13) на каждые 7 (из 8) молекул ацетил-СоА, образующихся при b-окислении пальмитиновой кислоты Всего образуется 8 молекул ацетил-СоА, и каждая из них, проходя через цикл лимонной кислоты, обеспечивает синтез 12 богатых энергией связей. Всего в расчете на молекулу пальмитата по этому пути генерируется 8 х 12 = 96 богатых энергией фосфатных связей. Если учесть две связи, необходимые для активации

    (см. скан)

    Рис. 23.3. Р Окисление жирных кислот. Длинноцепочечный ацит СоА последовательно укорачивается, проходя цикт за циклом ферментативные реакции 2-5; в результате каждого цикла происходит отщепление ацетил-СоА, катализируемое тиолазой (реакция 5). Когда остается четырехуглеродный ацильный радикал, то из него в результате реакции 5 образуются две молекулы ацетил-СоА.

    жирной кислоты, то в общей сложности получим 129 богатых энергией связей на 1 моль или кДж. Поскольку свободная энергия сгорания пальмитиновой кислоты составляет то на долю энергии, запасаемой в виде фосфатных связей при окислении жирной кислоты, приходится около 40%.

    Окисление жирных кислот в пероксисомах

    В пероксисомах -окисление жирных кислот происходит в модифицированном виде. Продуктами окисления в данном случае являются ацетил-СоА и , последняя образуется на стадии, катализируемой связанной с флавопротеином дегидрогеназой. Этот путь окисления непосредственно не сопряжен с фосфорилированием и образованием АТР, но он обеспечивает расщепление жирных кислот с очень длинной цепью (например, ); он включается при диете, богатой жирами, или приеме гиполипидемических лекарственных препаратов, таких, как клофибрат. Ферменты пероксисом не атакуют жирные кислоты с короткими цепями, и процесс Р-окисления останавливается при образовании октаноил-СоА. Октаноильные и ацетильные группы удаляются затем из пероксисом в виде октаноилкарнитина и ацетилкарнитина и окисляются в митохондриях.

    а- и b-Окисление жирных кислот

    Окисление является основным путем катаболизма жирных кислот. Однако недавно было обнаружено, что в тканях мозга происходит -окисление жирных кислот, т. е. последовательное отщепление одноуглеродных фрагментов от карбоксильного конца молекулы. В этом процессе участвуют интермедиаты, содержащие он не сопровождается образованием богатых энергией фосфатных связей.

    Окисление жирных кислот в норме весьма незначительно. Этот тип окисления, катализируемый гидроксилазами при участии цитохрома с. 123), протекает в эндоплазматическом -Группа превращается в --группу, которая затем окисляется до -СООН; в результате образуется дикарбоновая кислота. Последняя расщепляется путем Р-окисления обычно до адипиновой и субериновой кислот, которые затем удаляются с мочой.

    Клинические аспекты

    Кетоз развивается при высокой скорости окисления жирных кислот в печени, особенно в тех случаях, когда оно происходит на фоне недостатка углеводов (см. с. 292). Подобное состояние возникает при приеме пищи, богатой жирами, голодании, сахарном диабете, кетозе у лактирующих коров и токсикозе беременности (кетозе) у овец. Ниже приводятся причины, вызывающие нарушение процесса окисления жирных кислот.

    Недостаток карнитина встречается у новорожденных, чаще всего недоношенных детей; он обусловлен либо нарушением биосинтеза карнитина; либо его «утечкой» в почках. Потери карнитина могут происходить при гемодиализе; больные, страдающие органической ацидурией, теряют большое количество карнитина, который экскретируется из организма в форме конъюгатов с органическими кислотами. Для восполнения потерь этого соединения некоторые пациенты нуждаются в особой диете, включающей продукты, содержащие карнитин. Признаками и симптомами недостатка карнитина являются приступы гипогликемии, возникающие из-за снижения глюконеогенеза в результате нарушения процесса - окисления жирных кислот, уменьшение образования кетоновых тел, сопровождающееся повышением содержания СЖК в плазме крови, мышечная слабость (миастения), а также накопление липидов. При лечении внутрь принимают препарат карнитина. Симптомы недостатка карнитина очень сходны с симптомами синдрома Рейе (Reye), при котором, однако, содержание карнитина является нормальным. Причина синдрома Рейе пока неизвестна.

    Снижение активности карнитинпальмитоилтрансферазы печени приводит к гипогликемии и понижению содержания кетоновых тел в плазме крови, а снижение активности карнитин-пальмитоилтраисферазы мышц - к нарушению процесса окисления жирных кислот, в результате чего периодически возникает мышечная слабость и развивается миоглобинурия.

    Ямайская рвотная болезнь возникает у людей после употребления в пищу незрелых плодов аки (Blig-hia sapida), которые содержат токсин гипоглицнн, инактивирующий ацил-СоА-дегидрогеназу, в результате чего ингибируется процесс -окисления.

    При дикарбоновой ацидурии происходит экскреция кислот и развивается гипогликемия, не связанная с повышением содержания кетоновых тел. Причиной данного заболевания является отсутствие в митохондриях ацил-СоА-дегидрогеназы среднецепочечных жирных кислот. При этом нарушается -окисление и усиливается -окисление длинноцепочечных жирных кислот, которые укорачиваются до среднецепочечных дикарбоновых кислот, выводимых из организма.

    Болезнь Рефсума является редким неврологическим заболеванием, которое вызывается накоплением в тканях фитановой кислоты, образующейся из фитола; последний входит в состав хлорофилла, поступающего в организм с продуктами растительного происхождения. Фитановая кислота содержит метальную группу у третьего атома углерода, это блокирует ее -окисление. В норме эта метильная группа

    (см. скан)

    Рис. 23.4. Последовательность реакций окисления ненасыщенных жирных кислот на примере, линолевой кислоты. -Жирные кислоты либо жирные кислоты, образующие вступают на данный путь на стадии указанной на схеме.

    удаляется при а-окислении, но у людей, страдающих болезнью Рефсума, имеется врожденное нарушение системы а-окисления, что приводит к накоплению фитановой кислоты в тканях.

    Синдром Цельвегера (Zellweger) или цереброгепаторенальный синдром является редким наследственным заболеванием, при котором во всех тканях отсутствуют пероксисомы. У больных, страдающих синдромом Цельвегера, в мозгу накапливаются кислоты, поскольку из-за отсутствия пероксисом у них не происходит процесс окисления длинноцепочечных жирных кислот.

    Окисление ненасыщенных жирных кислот

    -окислении.

    Перекисное окисление полиненасыщенных жирных кислот в микросомах

    NADPH-зависимое перекисное окисление ненасыщенных жирных кислот катализируется ферментами, локализованными в микросомах (см. с. 124). Антиоксиданты, например БГТ (бутилированный гидрокситолуол) и а-токоферол (витамин Е), ингибируют перекисное окисление липидов в микросомах.